с 01.01.2023 по 01.01.2023
Рассматривается построение системы автоматического управления (САУ) технологическими объектами на основе регулятора состояния с наблюдателем, непрерывно оценивающим координаты состояния объекта и низкочастотную составляющую входного возмущения. В качества примера рассмотрен процесс построения САУ для технологического объекта, математическая модель которого может быть представлена в виде последовательного соединения апериодического звена второго порядка и звена запаздывания. Неизменяемая часть САУ включает объект управления и исполнительное устройство, модель которого описывается апериодическим звеном первого порядка. Подробно изложена предлагаемая процедура разработки структуры и определения коэффициентов коррекции движения наблюдателя, позволяющая обеспечить приемлемую скорость сходимости процесса наблюдения с учетом интенсивности помех измерения выходного сигнала объекта. Проведен сравнительный анализ качества функционирования разработанной САУ и альтернативной САУ на основе ПИД-регулятора. Настройка параметров регулятора состояния и ПИД-регулятора выполнена в режиме отработки ступенчатого задания при отсутствии входных возмущающих воздействий. Для настройки использованы процедуры многократного моделирования переходных процессов в MATLAB SIMULINK. Сравнительный анализ качества САУ выполнен по инженерным показателям функционирования систем при различных вариантах сочетания задающего и возмущающего воздействий. Результаты анализа показали, что система с регулятором состояния обеспечивает существенно более высокое качество управления во всех контрольных режимах. Проведенные исследования позволяют рекомендовать разработку и внедрение САУ с наблюдателем и регулятором состояния для повышения эффективности управления достаточно широким классом реальных технологических объектов, которые могут быть описаны апериодической звеном второго порядка с запаздыванием.
САУ, пространство состояний, наблюдатель координат состояния, оценка возмущения, регулятор состояния, ПИД-регулятор
Введение
В настоящее время САУ технологических объектов управления чаще всего строятся на основе ПИ- и ПИД-регуляторов [1, 2]. Существует ряд сравнительно простых методик настройки таких регуляторов, применение которых позволяет добиться приемлемого качества управления, и которыми владеет персонал служб автоматизации предприятий. Кроме того, в большинстве контроллеров, используемых при построении САУ, имеются программы, реализующие ПИД-регуляторы.
Эффективность функционирования многих промышленных объектов существенно зависит от точности поддержания заданного технологического режима в условиях действия не измеряемых возмущений, что предъявляет повышенные требования к качеству функционирования САУ. Однако САУ на основе ПИД-регуляторов не всегда способны обеспечить и высокое качество отработки изменения задания и эффективно подавлять действие возмущения.
Одним из альтернативных вариантов САУ технологическими объектами являются системы, в которых используются регуляторы состояния [3]. Такая система использует наблюдатель, который оценивает координаты состояния и низкочастотную составляющую не измеряемого возмущения. Рассмотрим подробнее процесс разработки такой САУ на примере системы, неизменяемая часть которой представлена на рис. 1.
Рис. 1. Структурная схема неизменяемой части системы управления
Fig. 1. Block diagram of the immutable part of the control system
Сигнал управления v(t), сформированный регулятором, перед подачей на исполнительное устройство ограничивается. На вход объекта подается управляющее воздействие u(t) и не измеряемое возмущение f(t). Выход объекта y(t) измеряется с помехой η(t), имеющей нулевое математическое ожидание. Математическая модель объекта описывается последовательным соединением апериодического звена второго порядка и звена запаздывания.
Разработка САУ на основе регулятора состояния неизменяемой части
Неизменяемая часть системы включает два динамических звена:
– объект управления, математическая модель которого включает последовательное соединение апериодического звена второго порядка и звена запаздывания;
– исполнительное устройство описывается апериодическим звеном первого порядка, выход которого – положение исполнительного устройства измеряется.
Структурная схема разрабатываемой САУ приведена на рис. 2.
В управляющей части системы используется наблюдатель, оценивающий координаты состояния объекта и возмущение f(t) [4 – 6], а также регулятор состояния [7].
Рис. 2. Структурная схема системы управления
Fig. 2. Block diagram of the control system
Выход объекта y(t) измеряется с погрешностью h(t), и результат измерения yи(t), а также измеряемый выход исполнительного устройства u(t) используются наблюдателем для оценки координат состояния объекта и возмущения f(t).
Заменим передаточную функцию e–2p в объекте при помощи аппроксимации Паде для экспоненциальных функций [8, 9]:
Запишем дифференциальное уравнение объекта в операторной форме:
где p – оператор дифференцирования.
Первую координату состояния объекта х1(t) выберем, разделив обе части (1) на произведение операторов
Остальные координаты выберем следующим образом: ; ; . Символом «'» здесь и далее обозначена производная по времени.
Объект управления является фильтром низкой частоты, который достаточно эффективно подавляет высокочастотные составляющие возмущения f(t). Только низкочастотные составляющие f(t) будет оценивать наблюдатель и подавлять регулятор. Поэтому в модели объекта и наблюдателя будем предполагать, что f(t) = const.
Уравнения, описывающие движение объекта в пространстве выбранных координат состояния, имеет вид системы нормальных уравнений:
Уравнение, связывающее выход объекта y(t) с координатами состояния, имеет вид:
В матричной форме уравнения, описывающие движение объекта и связь выхода с координатами состояния, можно представить следующим образом [10]:
где
Математическая модель, описывающая изменение оценок, формируемых наблюдателем, имеет вид следующей системы нормальных уравнений:
где xiнаб(t) и xiнаб'(t) – оценки соответственно i-й координаты состояния и её производной наблюдателем; ki – коэффициенты, вносящие коррекцию в движение xiнаб(t) в наблюдателе по результатам измерения выхода объекта yи(t);
Оценка выхода объекта наблюдателем состояния имеет следующее значение:
Матрица коррекции влияет на скорость сходимости оценок xiнаб(t) к истинным значениям xi(t) координат состояния объекта и на чувствительность оценок к погрешностям h(t) измерения выхода.
Необходимым условием сходимости оценок xiнаб(t) к значениям xi(t) является отрицательность вещественных частей всех четырех собственных чисел li матрицы A – KC движения оценок наблюдателя. Значения li (i=1,…,4) являются решениями характеристического уравнения наблюдателя:
где det – определитель квадратной матрицы; I – единичная 4х4 матрица.
Вычислим определитель и сгруппируем уравнение по степеням
Выберем все собственные числа li, равными -2. Уравнение, в котором полином четвертого порядка относительно λ имеет все корни, равные -2, запишем следующим образом:
Приравняем коэффициенты при одинаковых степенях λ и решим систему уравнений:
Получаем значения коэффициентов коррекции наблюдателя:
При выборе собственных чисел li, влияющих на коэффициенты коррекции ki, необходимо учитывать, что уменьшение li ускоряет процесс наблюдения и повышает чувствительность оценок наблюдателя к погрешностям h(t) измерения выхода объекта.
Регулятор состояния получает информацию о текущих значениях следующих сигналов:
– задающее воздействие (уставка) y*(t);
– оценка (x1наб(t), x2наб(t), x3наб(t), x4наб(t)T наблюдателем вектора (x1(t), x2(t), x3(t), x4(t))T координат состояния объекта, где T – символ транспонирования;
– x5(t) = u(t) – измеренное значение выхода исполнительного устройства системы.
Определим желаемые значения координат состояния в установившемся режиме. Пусть заданное значение выхода объекта управления (уставка) САУ равно у*(t).
Коэффициент усиления объекта управления КОБ равен 5. То есть в установившемся режиме выполняется соотношение:
Отсюда:
где u*(t) и V*(t) – желаемые значения сигналов u(t) и V(t) в установившемся режиме соответственно.
Возмущение f(t) – медленно изменяющаяся величина, которая оценивается наблюдателем в виде координаты х4(t).
В установившемся режиме координаты состояния объекта и исполнительного механизма должны иметь следующие значения:
- ;
- ;
- ;
- .
Управляющее воздействие V(t), формируемое регулятором состояния, включает две составляющие V*(t) и VПЕР(t). V*(t) обеспечивает поддержание выхода в установившемся режиме. VПЕР(t) формирует реакцию регулятора на отклонение координат состояния х1(t), х2(t), х3(t) и х5(t) от их значений х1*(t), х2*(t), х3*(t) и х5*(t) в желаемом установившемся режиме:
где R1, R2, R3, R4 – параметры настройки регулятора состояния.
Тогда текущее значение сигнала управления V(t), формируемого регулятором состояния, можно вычислить по формуле:
Моделирование переходных процессов САУ с регулятором состояния и альтернативной САУ на основе ПИД-регулятора
Коэффициенты R1, R2, R3, R4 определялись в результате многократного моделирования переходных процессов в MATLAB SIMULINK [11] в режиме отработки ступенчатого задания y*=100, f(t)=0. Получены следующие значения: R1 = 20; R2 = 65; R3 = 20; R4 = 6. Для сравнения качества работы регулятора состояния и альтернативного ПИД-регулятора параметры последнего настраивались в таком же режиме. При этом получена следующая передаточная функция регулятора:
В настраиваемом режиме показатели качества переходных процессов практически совпадают: время переходного процесса tр равно 15 минутам, перерегулирование σ равно нулю.
Для сравнения свойств САУ проведено исследование работы систем в различных режимах, представленных в табл. 1.
Таблица 1
Используемые режимы работы
Table 1
Operating modes used
Режим работы |
Задание y* |
Возмущение f(t) |
1 |
100 |
0 |
2 |
0 |
10 |
3 |
100 |
с момента t = 25 мин. f(t) = 0,5(t-25) |
4 |
0 |
10sin(0,05t) |
На рисунке 3 представлены графики переходных процессов в различных режимах. Во всех режимах работа САУ начинается из нулевых начальных условий. Настройка параметров альтернативных регуляторов выполнялась в режиме 1 отработки ступенчатого изменения задания y*=100. При этом желаемый переходный процесс – монотонный выход на задание за минимальное время.
В режиме 2 представлена отработка ступенчатого возмущающего воздействия f(t) = 10 при неизменном задании y*= 0.
В режиме 3 САУ отрабатывали выход на задание y*=100. При этом с момента t = 25 мин. на вход объекта действует линейно нарастающее возмущение f(t) = 0,5(t-25).
В режиме 4 представлена отработка альтернативными САУ гармонического возмущающего воздействия f(t) = 10sin(0,05t) при неизменном задании y*= 0.
Рис. 3. Графики переходных процессов
Fig. 3. Graphs of transients
В табл. 2 приведено сравнение качества работы систем управления с ПИД-регулятором и регулятором состояния (РС).
Таблица 2
Сравнение качества работы систем управления
Table 2
Comparison of the quality of control systems
Режим работы |
Время переходного процесса, мин. |
Перерегулирование, % |
Статическая ошибка, ед. |
Максимальное отклонение выхода объекта от задания, ед. |
Амплитуда колебаний выхода, ед. |
|||||
ПИД |
РС |
ПИД |
РС |
ПИД |
РС |
ПИД |
РС |
ПИД |
РС |
|
1 |
15 |
15 |
0 |
0 |
0 |
0 |
- |
- |
- |
- |
2 |
60 |
18 |
- |
- |
0 |
0 |
21 |
8 |
- |
- |
3 |
35 |
10 |
0 |
0 |
21 |
3 |
- |
- |
- |
- |
4 |
- |
- |
- |
- |
- |
- |
- |
- |
18,5 |
3 |
Заключение
Результаты работы САУ с регулятором состояния и ПИД-регулятором в различных режимах, представленные на рис. 3 и в табл. 2 позволяют сделать следующие выводы:
– в режиме отработки ступенчатого изменения уставки у*(t) при отсутствии возмущения f(t), в котором выполнялись настройки параметров регуляторов каждой из рассматриваемых САУ, инженерные показатели качества регулирования практически совпадают;
– в режимах, требующих подавления различных вариантов не измеряемых возмущающих воздействий f(t), разработанная САУ с регулятором состояния обеспечивала гораздо более высокие показатели качества регулирования.
1. Ang K.H., Chong G., Li Y. PID control system analysis, design, and technology // IEEE Transactions on Control Systems Technology. 2005 V. 13. №4. pp. 559-576.
2. Ковриго Ю.М., Баган Т.Г., Бунке А.С. Обеспечение робастного управления в системах регулирования инерционных теплоэнергетических объектов // Теплоэнергетика. - 2014. - №. 3. - С. 9-14.
3. Анисимов А.А., Тарарыкин С.В., Аполлонский В.В. Параметрическая оптимизация электромеханических систем с регуляторами и наблюдателями состояния // Вестник Ивановского государственного энергетического университета. - 2016. - №. 2. - С. 21-26.
4. Полещенко Д.А., Боровинских М.Д. Повышение эффективности работы шаровой мельницы путем совместного использования наблюдателя состояний и экстремального регулятора // Инженерный вестник Дона. - 2022. - № 11. - С. 55-72.
5. Анисимов А.А., Тарарыкин С.В. Синтез робастных систем управления мехатронными объектами с цифровыми регуляторами и наблюдателями состояния // Вестник Ивановского государственного энергетического университета. - 2020. - №. 6. - С. 39-47.
6. Пшихопов В.Х., Медведев М.Ю. Алгоритмическое обеспечение робастных асимптотических наблюдателей производных // Инженерный вестник Дона. - 2011. - Т. 16. - № 6. - С. 169-175.
7. Еременко И.Ф., Кривоносов В.А. Система управления с наблюдателем координат состояния и неопределенного возмущения // Приборы и системы. Управление, контроль, диагностика. - 2005. - №. 7. - С. 10-13.
8. Тхан В.З., Дементьев Ю.Н., Гончаров В.И. Повышение точности расчета систем автоматического управления с запаздыванием // Программные продукты и системы. - 2018. - Т. 31. - №. 3. - С. 521-526.
9. Xueyan L., Zheng Y. Comparison of time delay processing methods in control system // 4th international conference on computer science and network technology. 2015. V. 1. pp. 1502-1505.
10. Куок Д.В., Бобцов А.А. Адаптивный наблюдатель переменных состояния линейных нестационарных систем с параметрами, заданными не точно // Автоматика и телемеханика. - 2020. - №. 12. - С. 100-110.
11. Попадьин А.Н. Автоматизированная настройка ПИД-регулятора для управления следящим приводом с использованием программного пакета MATLAB SIMULINK // Морской вестник. - 2019. - №. 3. - С. 93-96.