DETERMINATION OF RUT DEPTH AND RUTING POWER WHEN ROLLING WHEELS ON DEFORMABLE GROUND
Abstract and keywords
Abstract (English):
Wheeled tractors and wheeled earth-moving machines are widely used in road construction, in municipal services. The group of wheeled vehicles, numerous and varied in purpose and design, are general transport vehicles used for the transportation of various types of bulk cargo, and specialized vehicles designed to perform narrow target functions. A characteristic feature of these types of wheeled vehicles is their ability to work not only on roads with asphalt-concrete pavement, but also on deformable soil surfaces. When the wheels roll on the ground, the power consumption required to ensure the movement of the wheeled vehicle increases sharply, questions arise related to the passability of the vehicles, their controllability, and the loads in the transmission. In this regard, it becomes necessary to consider various aspects of the movement of machines in these conditions, in particular, the determination of the power spent on rutting and the depth of the track, which is what this study is devoted to. The use of the “stamp wheel” model in this work made it possible to obtain relatively simple dependencies that make it possible to calculate the track depth and the power spent on rolling both a single wheel on deformable soil, and during the sequential passage of the wheels with an expansion of the track, when the next wheel does not move. in the next ", ie exactly along the track laid by the first wheel, and with some lateral displacement. In this case, part of the wheel moves along the laid track, and the other part expands the track, compacting the previously non-deformable soil. The results of calculations using the derived formulas are in good agreement with the experimental data, which indicates the practical applicability of the obtained dependences.

Keywords:
contact mechanics of engineering surfaces, friction and wear of interfaces, tribotechnical materials science, mechanics and control processes, kinematics, dynamics, strength and reliability of machines and structural elements
References

1. Balabina T.A., Karelina M.Yu., Mamaev A.N. Analiz issledovaniy kacheniya koles, konstrukcii i usloviy ekspluatacii kolesnyh mashin na pokazateli ih rabotosposobnosti. - M.: izd.”Pero”, 2020. S.119.

2. Mamaev A.N., Virabov R.V., Balabina T.A. Obschie voprosy vzaimodeystviya elastichnogo kolesa s zhestkoy opornoy poverhnost'yu. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferencii Associacii Avtomobil'nyh Inzhenerov (AAI) «Avtomobile- i traktorostroenie v Rossii: prioritety razvitiya i podgotovka kadrov», posvyaschennoy 145-letiyu MGTU «MAMI». MGTU «MAMI».- M.: izd. NAMI, 2010. S.73-80.

3. Virabov R.V., Mamaev A.N., Marinkin A.P., Yur'ev Yu.M. Vliyanie rezhima kacheniya elastichnogo kolesa na velichinu bokovoy sily pri bokovom uvode. Vestnik mashinostroeniya, 1986, №1. S.33-35.

4. Karelina M.Y., Balabina T.A., Mamaev A.N. Mechanics of Elastic Wheel Rolling on Rigid Drum. Lecture Notes in Mechanical Engineering, 2019. № 9783319956299. p. 2027-2035.

5. Mamaev A.N., Balabina T.A., Odinokova I.V., Gaevskiy V.V. Interaction mechanics of the wheel with the drum. IOP Conference Series: Materials Science and Engineering, 2019. Vol. 632, p. 012083.

6. Balabina T.A., Brovkina Y.I., Mamaev A.N. Elastic toroidal wheel rolling with side slip. Lecture Notes in Mechanical Engineering, 2019. № 9783319956299. p. 2027-2035.

7. T.A. Balabina, D.S. Simonov, V.R. Rogov, A.N. Mamaev, A.S. Vorontsov. Determination of Power and Kinematic Wheel Parameters when Rolling against a Drum. IOP Conference Series: Materials Science and Engineering, 2020. Vol. 832, p. 012077.

8. M.Yu. Karelina, T.A. Balabina, T.Yu. Cherepnina, A.N. Mamaev, A. S. Vorontsov. Influence of Tire Tread Convexity on its Rolling with a Slip. IOP Conference Series: Materials Science and Engineering, 2020. Vol. 832, p. 012078.

9. M.Yu. Karelina, T.A. Balabina, V.V. Filatov, A.N. Mamaev, A. S. Vorontsov. Influence of rolling condition and geometry of tire tread on its wear intensity. IOP Conference Series: Materials Science and Engineering, 2020. Vol. 832, p. 012079.

10. Clark S.K. Tire rolling resistance. ed. Rubber Div, ACS, 1983. P. 1-24.

11. Bekker M.G. Vvedenie v teoriyu sistemy «mestnost'-mashina». - M., Mashinostroenie, 1973, 520 s.

12. Babkov V.F., Birulya A.K., Sidenko V.M. Prohodimost' kolesnyh mashin po gruntu. - M., Avtotransizdat, 1959.

13. Babkov V.F. Soprotivlenie kacheniyu koles na deformiruyuscheysya opornoy poverhnosti. Trudy MADI. Vyp.16, MADI, 1955. S. 79-106.

14. Ageykin Ya.S. Vezdehodnye kolesnye i kombinirovannye dvizhiteli (teoriya i raschet). - M., Mashinostroenie, 1972.

15. Pirkovskiy Yu.V. Soprotivlenie kacheniyu mnogoprivodnyh avtomobiley i avtomobil'nyh poezdov po tverdym dorogam i deformiruemomu gruntu. Dissertaciya na soiskanie uchenoy stepeni dokt. tehn. nauk. M., MVTU, 1974, 399 s.

16. V.N. Dobromirov. Puti ocenki i snizheniya nagruzhennosti transmissii polnoprivodnyh avtomobiley tipa 8h8 obschetransportnogo naznacheniya. - Diss. na soiskanie uchenoy stepeni kand. tehn. nauk, M., MAMI, 1989.

17. Shuhman S.B. Issledovanie i razrabotka metodov povysheniya effektivnosti kolesnyh mashin za schet racional'nogo tipa silovogo privoda. A/r dokt. diss.- M., GNITI (NATI). 2001.

Login or Create
* Forgot password?