employee
Bryansk, Bryansk, Russian Federation
Bryansk, Russian Federation
employee
Moscow, Moscow, Russian Federation
A simplified method has been developed for assessing the loading of the load-bearing systems of passenger cars under thermal loading with a fire spot with limited properties. A system of simplifications for realizing a combustion spot is substantiated. A method for its implementation is proposed. The description of the object of research is given with the necessary thoroughness of presentation. A finite element scheme has been developed and adapted, taking into account the application of thermal loads in the system of an industrial software complex that implements the finite element method. Verification of the finite element scheme was carried out taking into account full-scale normative experiments. A conclusion is made about the possibility of the applicability of the finite element scheme for the study. Numerical experiments have been carried out to assess the carrying capacity of the body of a double-deck passenger car when it is exposed to a combustion center with known thermal parameters. The experiments were built and performed in a finite element method system. The results of simulations in the affected zone of the alleged fire were obtained for the conditional spot of its location. Comparison of the results with the static loading mode of the car body is considered. The analysis of the results obtained is carried out. A conclusion is given on the effect of a small localization fire on the carrying capacity of the car body. The proposed method is evaluated taking into account the possibility of further use
contact mechanics of engineering surfaces, friction and wear of interfaces, tribotechnical materials science, mechanics and control processes, kinematics, dynamics, strength and reliability of machines and structural elements
1. M. Miller “Atlantic County residents unhurt in Amtrak fire in North Carolina,” The Press of Atlantic City, pp. 2 (2007).
2. R.D. Peacock, R.W. Bukowski, P.A. Reneke, J.D. Averill and S.H. Markos, “Development of a fire hazard assessment method to evaluate the fire safety of passenger trains,” In Fire and Materials - Proceedings of 7th International Conference and Exhibition, 67-78 (2001).
3. M. Janssens and J. Huczek, “Fire Hazard Assessment of Commuter Rail Equipment,” Fire Risk & Hazard Assessment Research Application Symposium, 404-433 (2002).
4. L. Wang, Y. Chen, H. Zhai and S. Song “Analysis of Fire Safety Risks in Urban Rail Transit,” in 4th International Conference on Industrial Economics System and Industrial Security Engineering (IEIS) (Kyoto, Japan, 2017).
5. N. White, “Fire Development in Passenger Trains A thesis submitted in fulfilment of the requirements for the degree of Master of Engineering,” Victoria University, Australia, 2010.
6. D. Lee, W. H. Park, J. Hwang and G. Hadjisophocleous, “Full-Scale Fire Test of an Intercity Train Car,” Fire Technology 52(5), 1331-1335 (2016).
7. Y.Z. Li, H. Ingason “A new methodology of design fires for train carriages based on exponential curve method,” Fire Technology 52(5),1449-1464 (2016).
8. Y.Z. Li, H. Ingason and A. Lonnermark, “Fire development in different scales of train carriages,” Fire Safety Sci 11, 302-315 (2014).
9. Lönnermark, H. Ingason, Y.Z. Li and M. Kumm, “Fire development in a 1/3 train carriage mock-up,” Fire Saf J 91, 432-440 (2017).
10. H. Ingason, “Model scale railcar fire tests,” Fire Safety Journal 42, 271-282 (2007).
11. J. Capote, D. Alvear, O. Abreu, M. Lázaro and A. Cuesta, “Evacuation Modelling of Fire Scenarios in Passenger Trains,” (Pedestrian and Evacuation Dynamics, Springer, Berlin, Heidelberg, 2008).
12. R. E. Shaltout and M. Ismail “Simulation of Fire Dynamics and Firefighting System for a Full-Scale Passenger Rolling Stock,” (Sustainable Rail Transport, Lecture Notes in Mobility, Springer Nature Switzerland AG, 2019)
13. R.D. Peacock, “Fire Safety of Passenger Trains: Phase I: Material Evaluation (Cone Calorimeter),” Prepared by NIST. Interim Report, 1999.
14. R.D. Peacock, “Fire Safety of Passenger Trains: Phase II: Application of Fire Hazard Analysis Techniques,” Prepared by National Institute of Standards and Technology (NIST). Interim Report, 2001.
15. R.D. Peacock, “Fire Safety of Passenger Trains. Phase 3. Evaluation of Fire Hazard Analysis Using Full-Scale Passenger Rail Car Tests (NISTIR 6563),” NIST Pubs, 2014.
16. D.Yu. Antipin, V. Kobischanov i S. Shorohov «Razrabotka programmnogo obespecheniya dlya prognozirovaniya travm passazhirov transportnyh sredstv v avariynyh situaciyah», Materialy konferencii III Rossiysko-Tihookeanskoy konferencii po komp'yuternym tehnologiyam i prilozheniyam (RPC) IEEE, 8482161 (2018).
17. D.Ya. Antipin, S.G. Shorohov, O.I. Bondarenko «Primenenie CAD / CAE-tehnologiy dlya ocenki bezopasnosti passazhirov na zheleznodorozhnom transporte v chrezvychaynyh situaciyah», Seriya konferenciy IOP: Materialovedenie i inzheneriya, 022007 (2018).
18. Antipin, D.Ya. Issledovanie vliyaniya konstrukcii podkreplyayuschego nabora bokovoy steny passazhirskogo vagona na ego tehniko-ekonomicheskie pokazateli / S.N. Ashurkova, A.M. Vysockiy, D.Ya. Antipin // V sbornike materialov IV Vserossiyskoy nauchno-tehnicheskoy konferencii aspirantov, magistrantov i molodyh uchenyh s mezhdunarodnym uchastiem: Molodye uchenye - uskoreniyu nauchno-tehnicheskogo progressa v XXI veke. Otvetstvennye za vypusk: A. P. Tyurin, V. V. Syaktereva, 2016. - S. 886-889.
19. Antipin, D.Ya. Primenenie sovremennyh elementov SAPR dlya analiza napryazhenno-deformirovannogo sostoyaniya nesuschih konstrukciy kuzovov passazhirskih vagonov / S.N. Ashurkova, D.Ya. Antipin // V sbornike Mezhdunarodnoy nauchno-prakticheskoy konferencii: SAPR i modelirovanie v sovremennoy elektronike. Pod redakciey L.A. Potapova, A.Yu. Drakina, 2018. - S. 10-13..
20. AS 7529.3:2014 Railway Rolling Stock, Fire Safety - Part 3: Passenger Rolling Stock, RISSB, 2014.
21. Ashurkova, S.N. Obosnovanie konstruktivnyh resheniy nesuschey sistemy kuzova passazhirskogo vagona s gladkoy obshivkoy bokovyh sten/ S.N. Ashurkova// V sb. nauch.tr.: Sovershenstvovanie transportnyh mashin [Tekst] + [Elektronnyy resurs] / pod red. V.V. Rogaleva. - Bryansk: BGTU, 2019. - S.194-197.
22. Ashurkova, S.N. Vliyanie konstrukcionnyh osobennostey kuzovov passazhirskih vagonov na ih prochnostnye harakteristiki/ S.N. Ashurkova// Inzhenernoe i ekonomicheskoe obespechenie deyatel'nosti transporta i mashinostroeniya: materialy Mezhdunar. nauchn. konf. molodyh uchenyh. - Grodno: GrGU, 2017. - S. 121-123.
23. Ashurkova, S.N. Methods of analysis of the impact of design features of bodies of passenger cars on their stiffness and strength characteristics / S.N Ashurkova, V.V. Kobishchanov, E.V. Kolchina// Procedia Engineering, 2017. - T. 206. - R. 1623-1628.
24. Railway applications - Fire protection on railway vehicles - Part 2: Requirements for fire behavior of materials and components. In European Standard. Brussels, Belgium: European Committee for Standardization, 2008.
25. A.I. Danilov, V. Maslak, A. Vagin i I.A. Sivakov «Chislennoe modelirovanie pozhara v vagone metro», Pozharno-vzryvnaya bezopasnost'. 26. S. 27-35 (2017).
26. M.G. Shalygin, «Metodika vybora postavschika na osnove sootnosheniya kachestvennyh i stoimostnyh harakteristik produkcii», Kachestvo innovacionnogo procvetaniya 22 (3), 27-35 (2018).
27. A.G. Suslov and M.G. Shalygin, “Correlation between subroughness and surface phase composition,” in Mechanics, Resource and Diagnostics of Materials and Structures, MRDMS 2018, AIP Conference Proceedings 2053, edited by E. S. Gorkunov, V. E. Panin, S. Ramasubbu (American Institute of Physics, Melville, NY, 2018), pp. 030072.