Abstract and keywords
Abstract (English):
The article describes a statistical method for analyzing medical data based on the comparison of binary samples. Processing data that is accumulated in transactional medical information systems, based on the analysis of binary samples, allows you to determine the indicators of laboratory research and diagnoses that are characteristic of harmful production factors. This will contribute to the development of digital technologies in healthcare, which will improve both diagnostics and treatment methods, as well as facilitate the adoption of competent management decisions. The research results were converted to binary form by comparing them with the statistical norm interval. Diagnoses were considered initially as a binary variable. The samples obtained as a result of binarization for two groups, the first group includes people whose production activities contain harmful factors, and the second – those who do not have these factors, were compared with each other. The initial group turned out to be heterogeneous in relation to the other group, so it was decided to conduct a further study based on the development and testing of methods for adjusting samples in order to achieve uniformity while maximizing the preservation of medical data used for analysis.

Keywords:
medical data, binary samples, data analysis
References

1. Programma «Cifrovaya ekonomika Rossijskoj Federacii», utverzhdennaya protokolom zasedaniya prezidiuma Soveta pri Prezidente Rossijskoj Federacii po strategicheskomu razvitiyu i nacionalnym proektam ot 4 iyunya 2019 g. № 7// Ministerstvo cifrovogo razvitiya, svyazi i massovyh kommunikacij Rossijskoj Federacii [Elektronnyj resurs]. – URL: https://digital.gov.ru/ru/activity/directions/858/ (data obrashcheniya: 10.06.2020)

2. Geger, E.V. Sovershenstvovanie metodov obrabotki dannyh v informacionnyh sistemah podderzhki prinyatiya upravlencheskih reshenij / E.V. Geger, L.I. Evelson, S.I. Fedorenko, I.R. Kozlova // Sovremennye naukoemkie tekhnologii. Seriya Informatika, vychislitelnaya tekhnika i upravlenie. 05.13.10 – Upravlenie v socialnyh i ekonomicheskih sistemah (tekhnicheskie nauki). – 2019. – № 12 (chast 2). – S. 276-281.

3. Baranov, A.A. Metody i sredstva kompleksnogo intellektualnogo analiza medicinskih dannyh / A.A. Baranov, L.S. Namazova-Baranova, I.V. Smirnova. i dr //Trudy ISA RAN. – 2015.– Tom 65. 2. – S. 81-93.

4. Kashirin, I.YU. Interaktivnaya analiticheskaya obrabotka dannyh v sovremennyh OLAP-sistemah / I.YU. Kashirin, S.YU. Semchenkov. // Biznes-informatika. – 2009. – №2 (8). – S. 12-19.

5. O personalnyh dannyh: Federalnyj zakon ot 27.07.2006 № 152-FZ (red. ot 31.12.2017) // Konsultant Plyus [sajt]. – URL: http://www.consultant.ru/document/cons_doc_LAW_61801/ (data obrashcheniya: 05.06.2020).

6. Geger, E.V. Metodika sravneniya binarnyh vyborok pri analize medicinskih dannyh dlya prinyatiya upravlencheskih reshenij / E.V. Geger, I.R. Kozlova, O.N. YUrkova, L.I. Evelson. // XXI vek: itogi proshlogo i problemy nastoyashchego plyus. Informatika, vychislitelnaya tekhnika, upravlenie. – 2020. – №2 (50), T.9. – S. 164-170.

7. Geger, E.V. Razrabotka metoda ocenki riska professionalnoj zabolevaemosti, osnovannogo na statistike nechislovyh dannyh / E.V. Geger, S.I. Fedorenko, L.I. Evelson // Perspektivy nauki. – 2017. – №11 (98). – S. 7-13.

8. Geger, E.V. Razrabotka metoda ocenki professionalnyh zabolevanij dlya sozdaniya informacionnoj sistemy proizvodstvennoj bezopasnosti / E.V Geger, S.I. Fedorenko, L.I. Evelson, I.R. Kozlova // Vestnik NC BZHD. – 2019. – №1 (39). – S. 79-87.

9. Geger, E.V. Razrabotka metoda statisticheskoj ocenki riska professionalnoj zabolevaemosti, osnovannogo na analize binarnyh vyborok / E.V. Geger, S.I. Fedorenko, I.R. Kozlova. // Nauka i biznes: puti razvitiya. - 2018. - №3 (81). - S. 97-101.

10. Kobzar, A.I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnyh rabotnikov. – M.: Fizmatlit, 2006. – 816 s.

11. Orlov, A.I. Prikladnaya statistika / A.I. Orlov. – M.: Izdatelstvo «Ekzamen», 2006. – 671 s.

Login or Create
* Forgot password?