Russian Federation
Russian Federation
GRNTI 50.07 Теоретические основы вычислительной техники
BBK 3297 Вычислительная техника
In this work, we propose a no-reference method for automatic choice of the parameters of Perona-Malik image diffusion algorithm for the problem of image denoising. The idea of the approach it to analyze and quantify the presence of structures in the difference image between the noisy image and the processed image as the mutual information value. We apply the proposed method to photographic images and to retinal images with modeled Gaussian noise with different parameters and analyze the effects of no-reference parameter choice compared to the optimal results. The proposed algorithm shows the effectiveness of no-reference parameter choice for the problem of image denoising.
Image denoising, non-linear diffusion, mutual information, automatic parameter choice
1. Pietro Perona and Jitendra Malik. Scale-spaceand edge detection using anisotropic diffusion.IEEE Transactions on pattern analysis and machine intelligence, 12(7):629-639, 1990.
2. Karl Krissian and Santiago Aja-Fernández.Noise-driven anisotropic diffusion filtering of mri.IEEE transactions on image processing, 18(10):2265-2274, 2009.
3. Chourmouzios Tsiotsios and Maria Petrou. Onthe choice of the parameters for anisotropic diffusion in image processing. Pattern recognition,46(5):1369-1381, 2013.
4. Santiago Aja-Fernández and Carlos AlberolaLópez. On the estimation of the coefficient ofvariation for anisotropic diffusion speckle filtering. IEEE Transactions on Image Processing, 15(9):2694-2701, 2006.
5. Nikolay Mamaev, Dmitry Yurin, and AndreyKrylov. Choice of the parameter for bm3d denoising algorithm using no-reference metric. In2018 7th European Workshop on Visual Information Processing (EUVIP), pages 1-6. IEEE, 2018.
6. Jan J Koenderink. The structure of images. Biological cybernetics, 50(5):363-370, 1984.
7. Robert A Hummel. Representations based onzero-crossings in scale-space. In Readings inComputer Vision, pages 753-758. Elsevier, 1987.
8. N. Ponomarenko, L. Jin, O. Ieremeiev, V. Lukin,K. Egiazarian, J. Astola, B. Vozel, K. Chehdi,M. Carli, F. Battisti, and C.-C. Jay Kuo. Image database tid2013: Peculiarities, results andperspectives. Signal Processing: Image Communication, 30:57-77, 2015.
9. M.D. Abramoff J.J. Staa and, M. Niemeijer,M.A. Viergever, and B. van Ginneken. Ridgebased vessel segmentation in color images of theretina. IEEE Transactions on Medical Imaging,23:501-509, 2004.
10. Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli.Image quality assessment: from error visibility tostructural similarity. IEEE Transactions on Image Processing, 13(4):600-612, 2004.