Russian Federation
Russian Federation
Saratov, Saratov, Russian Federation
Saratov, Saratov, Russian Federation
Tomskiy politehnicheskiy universitet
Russian Federation
GRNTI 50.07 Теоретические основы вычислительной техники
BBK 3297 Вычислительная техника
In the present study, 45 patients with schizophrenia syndromes and 39 healthy subjects are studied with electroencephalogram (EEG) signals. The study groups were of different genders. For each of the two groups, the signals were analyzed using 16 EEG channels. Multiscale entropy, Lempel-Ziv complexity and Lyapunov exponent were used to study the chaotic signals. The data were compared for two groups of subjects. Entropy was compared for each of the 16 channels for all subjects. As a result, topographic images of brain areas were obtained, illustrating the entropy and complexity of Lempel-Ziv. Lempel-Ziv complexity was found to be more representative of the classification problem. The results will be useful for further development of EEG signal classification algorithms for machine learning. This study shows that EEG signals can be an effective tool for classifying participants with symptoms of schizophrenia and control group. It is suggested that this analysis may be an additional tool to help psychiatrists diagnose patients with schizophrenia.
entropy, chaos, EEG classification, schizophrenia, Lyapunov exponent
1. Akar S. A. et al. Analysis of the complexity measures inthe EEG of schizophrenia patients //International journal ofneural systems. - 2016. - T. 26. - №. 02. - S. 1650008.
2. Costa M., Goldberger A. L., Peng C. K. Multiscale entropyanalysis of biological signals //Physical review E. - 2005.- T. 71. - №. 2. - S. 021906.
3. Elvevag B., Goldberg T. E. Cognitive impairment inschizophrenia is the core of the disorder //CriticalReviews™ in Neurobiology. - 2000. - T. 14. - №. 1.
4. Ferenets R. et al. Comparison of entropy and complexitymeasures for the assessment of depth of sedation //IEEETransactions on Biomedical Engineering. - 2006. - T. 53.- №. 6. - S. 1067-1077.
5. Gaebel W. et al. Trends in Schizophrenia Diagnosis andTreatment //Advances in Psychiatry. - Springer, Cham,2019. - S. 603-619.AvtorV. Istochnik.
6. Humeau-Heurtier A. The multiscale entropy algorithm andits variants: A review //Entropy. - 2015. - T. 17. - №. 5. -S. 3110-3123.
7. Kaspar F., Schuster H. G. Easily calculable measure for thecomplexity of spatiotemporal patterns //Physical ReviewA. - 1987. - T. 36. - №. 2. - S. 842.
8. Kim D.J. et al. An estimation of the first positive Lyapunovexponent of the EEG in patients with schizophrenia//Psychiatry Research: Neuroimaging. - 2000. - T. 98. -№. 3. - S. 177-189.
9. Lempel A., Ziv J. On the complexity of finite sequences//IEEE Transactions on information theory. - 1976. - T. 22.- №. 1. - S. 75-81.
10. Röschke J., Fell J., Beckmann P. Nonlinear analysis ofsleep EEG data in schizophrenia: calculation of theprincipal Lyapunov exponent //Psychiatry research. -1995. - T. 56. - №. 3. - S. 257-269.
11. Wolf A. et al. Determining Lyapunov exponents from atime series //Physica D: Nonlinear Phenomena. - 1985. -T. 16. - №. 3. - S. 285-317.12. Wu X., Xu J. Complexity and brain function //ActaBiophysica Sinica. - 1991. - T. 7. - №. 1. - S. 103-106.