Moskva, Russian Federation
GRNTI 50.07 Теоретические основы вычислительной техники
BBK 3297 Вычислительная техника
The work is devoted to the problems of constructing a generalized computational experiment in the problems of computational aerodynamics. The construction of a generalized computational experiment is based on the possibility of carrying out parallel calculations of the same problem with different input data in multitasking mode. This allows carrying out parametric studies and solving problems of optimization analysis. The results of such an experiment are multidimensional arrays, for the study of which visual analytics methods should be used. The construction of a generalized experiment allows one to obtain dependences for valuable functionals on the determining parameters of the problem under consideration. The implementation of a generalized experiment allows one to obtain a solution for a class of problems in the ranges under consideration, and not just for one problem. Examples of constructing a generalized computational experiment for various classes of problems of computational aerodynamics are presented. The article also provides an example of constructing such an experiment for a comparative assessment of the accuracy of numerical methods.
generalized computational experiment, visual analysis, multidimensional data, parallel computations
1. Aleksahin V. F., Bakhtin V. A., Zhukova O. F., KolganovA. S., Krukov V. A., Ostrovskaya I. P., Podderugina N. V.,Pritula M. N., Savitskaya O. A. “Parallelization of NASparallel benchmarks for Intel Xeon Phi coprocessor inFortran-DVMH language”, Vestn. YuUrGU. Ser. Vych.Matem. Inform., 4:4 (2015), 48-63
2. Alekseev A.K., Bondarev A.E., Kuvshinnikov A.E.Verification on the Ensemble of Independent NumericalSolutions // Lecture Notes in Computer Science, Vol.11540, pp. 315-324, 2019. DOI:https://doi.org/10.1007/978-3-030-22750-0_25
3. Andreev S.V. et al.: A Computational Technology forConstructing the Optimal Shape of a Power Plant BladeAssembly Taking into Account Structural Constraints.Programming and Computer Software, 43(6), 345-352(2017). DOI:https://doi.org/10.1134/S0361768817060020.
4. Bakhtin V.A., Chetverushkin B.N., Kryukov V.A.,Shil’nikov E.V., “Extension of the DVM parallelprogramming model for clusters with heterogeneousnodes”, Doklady Mathematics, 84 (3), 879-881 (2013).
5. Bakhtin V. A., Kolganov A. S., Krukov V. A.,Podderyugina N. V., Pritula M. N. “Mapping DVMHprograms with regular dependencies onto clusters withGPU”, Vestn. YuUrGU. Ser. Vych. Matem. Inform., 2:4(2013), 44-56
6. Bakhtin V. A., Klinov M. S., Kolganov A. S., Krukov V.A., Podderyugina N. V., Pritula M. N. “Automatic mappingof Fortran programs onto clusters with graphics processingunits”, Vestn. YuUrGU. Ser. Vych. Matem. Inform., 3:3(2014), 86-96
7. Bakhtin V. A., Zaharov D. A., Kolganov A. S., Krukov V.A., Podderyugina N. V., Pritula M. N. “Development ofparallel applications using DVM-system”, Vestn. YuUrGU.Ser. Vych. Matem. Inform., 8:1 (2019), 89-106
8. Bondarev A.E. “Effect of supersonic stream parameters onthe characteristic time of transient step flow”. 1989 IzvestiyaAN SSSR, Mekhanika zhidkosti I gaza 4 p 137-40 [InRussian].
9. Bondarev A.E. “Analysis of Space-Time Flow Structures byOptimization and Visualization Methods” // Transactionson Computational Science XIX, LNCS 7870, 158-168(2013).
10. Bondarev A.E. and Galaktionov V.A. “ParametricOptimizing Analysis of Unsteady Structures andVisualization of Multidimensional Data” // InternationalJournal of Modeling, Simulation and Scientific Computing,V.04, supp01, (2013) DOIhttps://doi.org/10.1142/S1793962313410043.
11. Bondarev A.E. and Galaktionov V.A. “Analysis of SpaceTime Structures Appearance for Non-Stationary CFDProblems” // Procedia Computer Science, 51, 1801-1810(2015).
12. Bondarev A.E. “Design and analysis of multidimensionalparametrical solutions for time-dependent CFD problems”// Mathematica Montisnigri, XXXIII, 58-68 (2015).
13. Bondarev A.E. On the Construction of the GeneralizedNumerical Experiment in Fluid Dynamics // MathematicaMontisnigri, Vol. XLII, 2018, p. 52-64.
14. Bondarev A.E. On visualization problems in a generalizedcomputational experiment (2019). Scientific Visualization11.2: 156 - 162, DOI:https://doi.org/10.26583/sv.11.2.12
15. Bondarev A.E. . On the Estimation of the Accuracy ofNumerical Solutions in CFD Problems // Lecture Notes inComputer Science, Vol. 11540, pp. 325-333, 2019. DOIhttps://doi.org/10.1007/978-3-030-22750-0_26
16. Bondarev, A.E. et al.: Design of program tool BURGERS2for hybrid finite-difference schemes optimization andvisualization. Scientific Visualization 5(1), 26-37 (2013).
17. Bondarev A.E., Kuvshinnikov A.E. Analysis of theAccuracy of OpenFOAM Solvers for the Problem ofSupersonic Flow Around a Cone // Lecture Notes inComputer Science 10862, pp. 221-230, 2018.https://doi.org/10.1007/978-3-319-93713-7_18
18. Bondarev E.N., Dubasov V.T., Ryzhov Y.A., SvirschevskyS.B. and Semenchikov N.V. 1993 Aerigidromeckanika.(Moscow: Mashinostroenie) p 608 [In Russian].
19. DVM-system Available at: http://dvm-system.org/(accessed 25 July 2019)
20. Gorban A, Kegl B, Wunsch D and Zinovyev A 2007Principal Manifolds for Data Visualisation and DimensionReduction (Berlin - Heidelberg - New York: Springer)
21. Gorban A.N., Zinovyev A. “Principal manifolds and graphsin practice: from molecular biology to dynamical systems”,International Journal of Neural Systems, Vol. 20, No. 3(2010). Pp. 219-232.
22. Ivanov A. V., Khilkov S. A. “Aiwlib library as theinstrument for creating numerical modeling applications”,Scientific Visualization, 10(1), 110 - 127 (2018). DOIhttps://doi.org/10.26583/sv.10.1.09
23. Keim D., Kohlhammer J., Ellis G. and Mansmann F. (Eds.)Mastering the Information Age - Solving Problems withVisual Analytics, Eurographics Association, 2010.
24. Kielman, J. and Thomas, J. (Guest Eds.) (2009). SpecialIssue: Foundations and Frontiers of Visual Analytics /Information Visualization, Volume 8, Number 4, p. 239-314.
25. Kozlov L.V. “Experimental investigation of surface frictionon a flat plate in a supersonic flow in the presence of heattransfer”. 1963 Izvestiya AN SSSR, Mekhanika imashinostroenie 2 p11-20 [In Russian].
26. Pacheco P., Programming Parallel with MPI. SanFrancisco, CA: Morgan Kaufmann, 1997.
27. Thomas J. and Cook K. 2005 Illuminating the Path:Research and Development Agenda for Visual Analytics(IEEE-Press)
28. Wong P. C., Thomas J. Visual Analytics // IEEE ComputerGraphics and Applications. 2004. V. 24, N. 5. - P. 20-21.
29. Zinovyev A 2000 Vizualization of multidimensional data(Krasnoyarsk: Krasnoyarsk Univ.)