Institut prikladnyh matematicheskih issledovaniy Karel'skogo nauchnogo centra RAN
GRNTI 50.07 Теоретические основы вычислительной техники
BBK 3297 Вычислительная техника
The problem of segmentation of three-dimensional fMRI images based on the Bayesian approach is considered, where Markov Random Field is used as the prior distribution, and von Mises-Fisher distribution is used as the observation model. The main problem when applying this approach in practice is an estimation of the model parameters. In this paper, we review algorithms HMRF-MCEM, HMRF-EM and GrabCut, which implement this statistical model and estimate parameters without the usage of the labeled training data. The methods HMRF-EM and GrabCut were introduced in conjunction with other statistical models, but after a small modification, they can be used with the von Mises-Fisher distribution. A comparative study was carried out by performing experiments on both synthetic, generated from the statistical model, and real fMRI data.
fMRI, segmentation, Markov random field, von Mises-Fisher distribution, Bayesian inference
1. A. Eklund, T. E. Nichols, and H. Knutsson. Cluster failure: Why fmri inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences, 113(28):7900-7905, 2016.
2. X. Descombes, F. Kruggel, and D. Y. Von Cramon. Spatio-temporal fmri analysis using markov random fields. IEEE Transactions on Medical Imaging, 17(6):1028-1039, Dec 1998.
3. W. Liu, S. P. Awate, J. Anderson, and P. Thomas Fletcher. A functional networks estimation method of resting-state fmri using a hierarchical markov random field. NeuroImage, 100:520-534, 2014.
4. W. Liu, S. P. Awate, J. Anderson, D. Yurgelun-Todd, and P. Thomas Fletcher. Monte carlo expectation maximization with hidden markov models to detect functional networks in resting-state fmri. In Machine Learning in Medical Imaging, pages 59-66, 2011.
5. Y. Zhang, M. Brady, and S. Smith. Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1):45-57, 2001.
6. C. Rother, V. Kolmogorov, and A. Blake. Grabcut - interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics (SIGGRAPH), 23(3):309-314, 2004.
7. P. Perez. Markov random fields and images. CWI Quarterly, pages 413-437, 1998.
8. M. A. Hurn, O. K. Husby, and H. Rue. A tutorial on image analysis. In Spatial Statistics and Computational Methods, pages 87-141. Springer New York, 2003.
9. Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222-1239, Nov 2001.
10. A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra. Clustering on the unit hypersphere using von misesfisher distributions. J. Mach. Learn. Res., 6:1345- 1382, 2005.
11. C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.
12. W. R. Crum, O. Camara, and D. L. G. Hill. Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Transactions on Medical Imaging, 25(11):1451- 1461, Nov 2006.
13. X. Zuo, C. Kelly, J. S. Adelstein, D. F. Klein, F. X. Castellanos, and M. P. Milham. Reliable intrinsic connectivity networks: Test-retest evaluation using ica and dual regression approach. NeuroImage, 49(3):2163 - 2177, 2010.
14. NITRC. Nyu csc testretest dataset was obtained from www.nitrc.org., 2009 (accessed August 26 2019).