FGBUN Novosibirskiy gosudarstvennyy tehnicheskiy universitet
FGBUN Institut matematiki im. S.L. Soboleva SO RAN
FGBUN Novosibirskiy gosudarstvennyy tehnicheskiy universitet
FGBUN Novosibirskiy gosudarstvennyy tehnicheskiy universitet
FGBUN Konstruktorsko-tehnologicheskiy institut nauchnogo priborostroeniya SO RAN
FGBUN Novosibirskiy gosudarstvennyy tehnicheskiy universitet
GRNTI 50.07 Теоретические основы вычислительной техники
BBK 3297 Вычислительная техника
The study of the structure of the candle flame is discussed in the work. The optical diagnostics adapted to the study of combustion problems is based on the visualization of phase disturbances induced in the probe light field by the medium under study with using Hilbert optics and interferometry methods combined with pixel-by-pixel processing of the dynamic structure of the recorded images. The diagnostic complex is implemented on the basis of the IAB–463M device with modified blocks of optical filtration, light source, registration and information processing. The dynamic phase structure of the candle flame was visualized. The temperature was measured using thermocouples at the reference points. The phase function was restored on axisymmetric sections from the obtained hilbertograms. The temperature field of flame was reconstructed using the inverse Abel transform.
optical diagnostics of flames, Hilbert optics, interferometry
1. Belozerov A.F. Opticheskie metody vizualizacii potokov. Kazan': izdatel'stvo KGTU. 2007. 747 s.
2. Dubnischev Yu.N., Arbuzov V.A., Belousov P.P., Belousov P.Ya. Opticheskie metody issledovaniya potokov. Novosibirsk: Sibirskoe universitetskoe izdatel'stvo. 2003. 408 s.
3. Litvinenko Yu.A. Ustoychivost' dozvukovyh makro- i mikrostrukturnyh techeniy i mikrostruynoe gorenie (obzor) // Sibirskiy fizicheskiy zhurnal. 2017. 12, (3). S. 83-89.
4. Dubnishchev Yu.N., Lemanov V.V., Lukashov V.V., Arbuzov V.A., Sharov K.A. Hydrodynamic vortex structures in a diffusion jet flame (Electronic edition). «Swirling Flows and Flames». pp. 32-5. DOI:https://doi.org/10.5772/intechopen.80610. Published: November 5th 2018. https://www.intechopen.com/online-first/hydrodynamicvortex-structures-in-a-diffusion-jet-flame.
5. Dubnishchev Yu.N., Arbuzov V.A., Lukashov V.V., Sharov K.A., Lemanov V.V. Optical Hilbert Diagnostics of Hydrogen Jet Burning // Optoelectron., Instrum. Data Process. 2019. 55: pp. 16-19. https://doi.org/10.3103/S8756699019010035
6. Jochen A.H. Dreyer, Radomir I. Slawchov, Eric J. Rees, Jethro Akroyd, Maurin Salamanca, Sebastian Mosbach, and Markus Kraft. Improved methodology for performing the inverse Abel transform of flame images for cilir ratio pyrometry // Applied Optics. 2019. 58, (10). pp. 2662-2670.
7. Qunxing Huang, Fei Wang, Jianhua Yan, and Yong Chi. Simultaneous estimation of the 3-D soot temperature and volume faction distributions in asymmetric flames using high-speed stereoscopicsimages // Applied Optics. 2012. 51 (15). pp. 2968-2978.