graduate student
Samara, Samara, Russian Federation
VAC 2.6.17 Материаловедение
UDK 539 Строение материи
BBK 342 Металловедение
The study results are given which are devoted to finding the effect of reinforcement with fine phase of titanium carbide in the amount of 10 masses% on the physico-mechanical and tribotechnical properties of industrial aluminum AM4.5Kd alloy. The physico-mechanical (density, porosity, coefficient of thermal linear expansion, hardness, microhardness) and tribotechnical (wear rate, friction factor, self-heating temperature) properties of the composite material AM4.5Kd-10%TiC obtained by self-propagating high-temperature synthesis before and after heat treatment are analyzed. It is found out that composite samples after heat treatment have a good combination of physical and mechanical properties, namely a low level of porosity, a low value of the coefficient of thermal linear expansion, and the values of hardness and microhardness are increased twice. Special attention should be paid to the fact that reinforcement with a ceramic phase in combination with heat treatment leads to a significant increase in the level of wear resistance of the matrix alloy (by 9 times) and a decrease in the friction factor (by 4 times). Thus, according to the results of the studies conducted, the resulting composite material AM4.5Kd-10%TiC can be recommended as a material used in tribological assemblies.
composite material, aluminum, titanium carbide, tribology, high-temperature synthesis
1. Kim DY, Choi HJ. Recent developments towards commercialization of metal matrix composites. Materials (Basel). 2020;13(12):2820-2828. DOI: 10.3390/ ma13122828.
2. Lovshenco FG, Lozikov IA, Khabibutin AI. High-temperature aluminum composite materials with special physical and mechanical properties produced by mechanical alloying. Foundry Production and Metallurgy. 2020;3; 99-111. DOI: 10.21122 16X3-6065-2020-3-99−111.
3. Alam MA, Ya HH, Azeem M, Yusuf M, Soomro IA, Masood F, Shozib IA, Sapuan SM, Akhter J. Artificial neural network modeling to predict the effect of milling time and TiC content on the crystallite size and lattice strain of Al7075-TiC composites fabricated by powder metallurgy. Crystals. 2022;12:372-392. DOI:https://doi.org/10.3390/cryst12030372.
4. Shi Q, Mertens R, Dadbakhsh S, Li G, Yang S. In-situ formation of particle reinforced Aluminium matrix composites by laser powder bed fusion of Fe2O3/AlSi12 powder mixture using laser melting/remelting strategy. Journal of Materials Processing Technology. 2022;299:117357. DOI:https://doi.org/10.1016/j.jmatprotec.2021.117357.
5. Amosov AP, Lutz AR, Latukhin EI, Ermoshkin AA. Application of SHS processes for the production of in situ aluminium matrix composites discretely reinforced with nanosized titanium carbide particles (review). Izvestiya. Non-ferrous Metallurgy. 2016;1:39-49. DOI:https://doi.org/10.17073/0021-2016-1-39-49.
6. Lutz AR, Amosov AP, Latukhina EI, Ermoshkin AA. Reinforcing Al-5%Cu alloy with titanium carbide nanoparticles by SHS method in melt. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2017;19(1(3)):529-535.
7. Lutz AR, Sherina YuV, Amosov AP, Kachura AD. Liquid matrix SHS manufacturing and heat treatment of Al-Mg composites reinforced with fine titanium carbide. Izvestiya. Non-ferrous Metallurgy. 2023;59(4):70-86. DOI:https://doi.org/10.17073/0021-3438-2023-4-70-86.
8. Kainer KU, Huang YD, Hort N, Dieringa H, Liu YL. Microstructural investigations of interfaces in short fiber reinforced AlSi12CuMgNi composites. Acta Materialia. 2005;53:3913-3923. DOI:https://doi.org/10.1016/j.actamat.2005.04.039.
9. Kurganova YuA. Development and application of dispersed hardened aluminum matrix composites in mechanical engineering [dissertation]. [Moscow (RF)]; 2008.
10. Mironova EV, Zatulovsky AS, Kosinskaya AV, Zatulovsky SS. Cast composites based on aluminum alloy for the automotive industry. Kyev; 2006.
11. Mikheev RS. Development of wear-resistant polymer-filled composites and their coatings [dissertation]. [Moscow (RF)]: MISiS; 2010.
12. Khazin ML, Apakashev RA. New materials for mining machine parts. MIAB. Mining Informational and Analytical Bulletin. 2023;12:149-163. DOI:https://doi.org/10.25018/0236_1493_2023_121_0_149.
13. Mikheev RS, Chernyshova TA. Aluminium matrix composites reinforced with carbide for solving problems of new technology. Moscow: URSS Publishing Group; 2013.
14. Adiga K, Herbert MA, Rao SS, Shettigar A. Applications of reinforcement particles in the fabrication of aluminium metal matrix composites by friction stir processing. Manufacturing Review. 2022;9(26):1-17. DOI:https://doi.org/10.1051/mfreview/2022025.
15. Nayak KC, Rane KK, Date PP, Srivatsan TS. Synthesis of an aluminum alloy metal matrix composite using powder metallurgy: role of sintering parameters. Applied Science. 2022;12:8843. DOI:https://doi.org/10.3390/app12178843.
16. Hamid FS, EL-Nikhaily A, Abd Ellatif HR, El kady OA. Morphology and mechanical properties of Al-TiC nanocomposite processed via ball milling technique. International Journal of Materials Technology & Innovation (IJMTI). 2021;1:18-29. DOI:https://doi.org/10.21608/ijmti.2021.181121.
17. Maziarz W, Bobrowski P, Wójcik A, Bigos A, Szymański Ł, Kurtyka P, Rylko N, Olejnik E. Microstructure and mechanical properties of In situ cast aluminum based composites reinforced with TiC nano-particles». MSF. 2020;985:211-217. DOI:https://doi.org/10.4028/www.scientific.net/msf.985.211.
18. Mohapatra S, Chaubey AK, Mishra DK, Singh SK. Fabrication of Al-TiC composites by hot consolidation technique: its microstructure and mechanical properties. Journal of Materials Research and Technology. 2016;5(2):117-122. DOI:https://doi.org/10.1016/j.jmrt.2015.07.001.
19. Sohag AZ, Gupta P, Kondal N, Kumar D, Singh N, Jamwal A. Effect of ceramic reinforcement on the microstructural, mechanical and tribological behavior of Al-Cu alloy metal matrix composite. Materials Today Proceedings. 2020;21:1407-1411. DOI:https://doi.org/10.1016/j.matpr.2019.08.179.
20. Veeravalli RR, Nallu R, Mohammed M M-S. Mechanical and tribological properties ofAA7075-TiC metal matrix composites under heattreated (T6) and cast conditions. Journal Materres Technol. 2016;7:377-383. DOI:https://doi.org/10.1016/j.jmrt.2016.03.011.
21. Uvaraja VC. Heat treatment parameters to optimize friction and wear behavior of novel hybrid aluminium composites using taguchi technique. International Journal of Engineering and Technology. 2014;6(2):939-947.
22. Sherina YuV, Lutz AR, Kachura AD, Shigin SV. Study of the influence of flux type of on the synthesis of cast composite material AMg2-10%TiC. Transport Engineering. 2023;7(9):40-48. DOI:https://doi.org/10.30987/2782-5957-2023-7-40-48.
23. Merkulova GA. Metallology and heat treatment of non-ferrous alloys: textbook. Krasnoyarsk; 2008.
24. Mohapatra S, Chaubey AK, Mishra DK, Singh SK. Fabrication of Al-TiC composites by hot consolidation technique: its microstructure and mechanical properties. Journal of Materials Research and Technology. 2016;2(5):117-122. DOI:https://doi.org/10.1016/j.jmrt.2015.07.001.
25. Ali M. Review of stir casting technique and technical challenges for ceramic reinforcement particulate and aluminium matrix composites. Journal of Silicate Based and Composite Materials. 2020;6(72):198-204. DOI:https://doi.org/10.14382/epitoanyag-jsbcm.2020.32.
26. Rosso M. Ceramic and metal matrix composites: routes and properties. Journal of Materials Processing Technology. 2006;1(175):364-375. DOI:https://doi.org/10.1016/j.jmatprotec.2005.04.038.
27. Prusov ES. Development of scientific foundations for creating cast complexly reinforced aluminium matrix composites for high-duty castings [dissertation]. [Nizhny Novgorod (RF)]; 2023.
28. Belov NA. Phase composition of aluminum alloys. Scientific edition. Mosocw: MISiS; 2009.
29. Aksenov AA. Composition and structure optimization of aluminum- and copper-based composites obtained by liquid phase methods and mechanical alloying [dissertation]. [Moscow (RF)]; 2007. 390 P.
30. Kalashnikov IE. Development of reinforcement and modification methods of aluminium matrix composite structure [dissertation]. [Moscow (RF)]; 2011.
31. Mohammed MH, Konovalov SV, Panchenko IA, Pashkova DD. Study of the properties and structure of aluminum matrix composites formed by TiO2 particles. Polzunovskiy Vestnik. 2022;2(4):7-13. DOI:https://doi.org/10.25712/ASTU.2072-8921.2022.4.2.001.