DIAGNOSTICS OF ENGINEERING CUTTING SYSTEM USING CUTTING FORCE PARAMETERS
Abstract and keywords
Abstract (English):
The purpose of this work: the engineering process optimization of 09H17N7Yu steel turning at the expense of creating the procedure allowing the diagnostics of an engineering cutting system state on the results of cutting force control, inverse problem solution, that is, cutting force control according to the analysis results of system state diagnostics, the optimization of cutting mode parameters to ensure the required values of a cutting force, on the basis of the analysis results of a cutting force the tool materials and tool geometry should be recommended for cutter wear-resistance increase, the prediction of tool life at the expense of designing new tool materials and tool geometry for new conditions of their operation. There are presented recommendations to ensure a correct choice of carbide cutting inserts quality for the specified conditions of their operation. On the investigation results there are obtained conclusions: the most promising for special stainless steel 09H17N7Yu turning were tool materials: TC8+TiCN(mkm) + (TiAl)N(3mkm) + Al2O3(5mkm) + TiC(5mkm); TC8+Al2O3(2mkm) + (Ti)CN(5mkm) + (TiAl)N(3mkm) + TiN(3mkm); TC8 + (TiAl)N(3mkm) + Al2O3(3mkm) + (TiAl)N(3mkm) + Al2O3(3mkm); it is defined that at cutting mode forcing (cutting speed 60m/min, depth 2.5mm) or at turning titanium alloy TT-22 more complex in machining the mentioned tool materials met the demands made, that is, real insert life varied from the designed one not considerably (in the first case – 7% maximum, in the second one – 14%), that is the most acceptable. Work novelty: there is offered and substantiated a procedure for cutting force constituents use on the basis of simulation for the choice or design of tool material for turning in different conditions of tool operation.

Keywords:
force, cutting, control, life, tool, recommendations
References

1. Abou-El-Hossein, K.A. High-speed end-milling of AISI 304 stainless steels using new geometrically developed carbide inserts / K.A. Abou-El-Hossein, Z. Yahya // Journal of Materials Processing Technology. – 2005. - Vol. 162–163. - Pp.596-602. - Doi.org/10.1016/j.jmatprotec.2005.02.129.

2. Behera, B.C. Wear behavior of PVD TiN coated carbide inserts during machining of Nimonic 90 and Ti6Al4V superalloys under dry and MQL conditions / B.C. Behera, S. Ghosh, P.V. Rao // Ceramics International. – 2016. - Vol. 42. - Iss. 13. - Pp. 14873-14885. - Doi.org/10.1016/j.ceramint.2016.06.124.

3. Cherukuri, R. Pulsed laser deposition of AlMgB14 on carbide inserts for metal cutting / R. Cherukuri, M. Womack, P. Molian, A. Russell, Y. Tian // Surface and Coatings Technology. – 2002. - Vol. 15. - Iss. 2–3. - Pp.112-120. - Doi.org/10.1016/S0257-8972(02)00050-6.

4. Das, S. Chattopadhyay A.B. Evaluation of wear of turning carbide inserts using neural networks / S. Das, R. Roy// International Journal of Machine Tools and Manufacture. – 1996. – Vol. 36. – Iss. 7. – Pp. 789-797. - Doi.org/10.1016/0890-6955(95)00089-5.

5. Engström, L.U. Multiple grade cemented carbide inserts for metal working and method of making the same / L.U. Engström, H. Ouchterlony // US Patent 6,685,880, 2004. - https://patents.google.com/patent/US6685880B2/en.

6. Gassne, M. Influence of Ar ion etching on the surface topography of cemented carbide cutting inserts / M. Gassner, N. Schalk, B. Sartory, M. Pohler, Ch. Czettl, Ch. Mitterer // International Journal of Refractory Metals and Hard Materials. – 2017. - Vol. 69. - Pp. 234-239. - Doi.org/10.1016/j.ijrmhm.2017.08.015.

7. Li, H.Z. An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts / H.Z. Li, H. Zeng, X.Q. Chen // Journal of Materials Processing Technology. – 2006. - Vol. 180. - Iss. 1–3. - Pp. 296-30. - Doi.org/10.1016/j.jmatprotec.2006.07.009.

8. More, A.S. Tool wear and machining performance of cBN–TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel / A.S. More, W. Jiang, W.D. Brown, A.P. Malshe // Journal of Materials Processing Technology. – 2006. - Vol. 180. - Iss. 1–3. - Pp. 253-262. - Doi.org/10.1016/j.jmatprotec.2006.06.013.

9. Randall, W. Cutting bit mount having carbide inserts and method for mounting the same // RW Ojanen - US Patent 5,251,964, 1993.

10. Roy, P. Machinability study of pure aluminium and Al–12% Si alloys against uncoated and coated carbide inserts / P. Roy, S.K. Sarangi, A. Ghosh, A.K. Chattopadhyay // International Journal of Refractory Metals and Hard Materials. – 2009. - Vol. 27. - Iss. 3. - Pp.535-544. - Doi.org/10.1016/j.ijrmhm.2008.04.008.

11. Saho, A.K. Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts / A.K. Sahoo, B. Sahoo // Measurement. – 2012. - Vol. 45. - Iss. 8. - Pp.2153-2165. - Doi.org/10.1016/j.measurement.2012.05.015.

12. Schramm, B.C. Tribological properties and dry machining characteristics of PVD-coated carbide inserts / B.C. Schramm, H. Scheerer, H. Hoche, E. Broszeit, E. Abele, C. Berger // Surface and Coatings Technology. – 2004. - Vol. 188–189. - Pp. 623-629. - Doi.org/10.1016/j.surfcoat.2004.07.067

13. Skordaris G., Bouzakis K.D., Charalampous P., Kotsanis T., Bouzakis E., Bejjani R. Bias voltage effect on the mechanical properties, adhesion and milling performance of PVD films on cemented carbide inserts / G. Skordaris, K.D. Bouzakis, P. Charalampous, T. Kotsanis, E. Bouzakis, R. Bejjani // Wear. – 2018. - Vol. 404–405. - Pp. 50-61. - Doi.org/10.1016/j.wear.2018.03.001.

14. Vereschaka, A. Application of finite element method (FEM) to study stress-strain state and distribution of temperatures in cutting zone in turning of various structural materials by carbide tools with coatings of various composition and architecture. / A. Vereschaka, B. Mokritskii, E. Mokritskaya, O. Sharipov, C. Sotova //IOP Conf. Series: Materials Science and Engineering. – 2019. – Vol. 613. - 012019. - Doi:10.1088/1757-899X/613/1/012019.

15. Vereschaka, A. Application of nanostructured Zr-ZrN-(Zr,Al)N and Zr-ZrN-(Zr,Cr,Al)N coatings for improvement of tool life and performance in end milling of carbides / A. Vereschaka, M. Oganyan, Y. Bublikov, N. Sitnikov, K. Deev, V. Pupchi, B. Mokritskii //IOP Conf. Series: Materials Science and Engineering. – 2019. Vol. 613. - 012020. - doi:10.1088/1757-899X/613/1/012020.

16. Vereschaka, A. Two-component end mills with multilayer composite nano-structured coatings as a viable alternative to monolithic carbide end mills / A. Vereschaka, B. Mokritskii, E. Mokritskaya, O. Sharipov, M. Oganyan //Mechanics & Industry. – 2017. – Vol. 18. – P. 705. - https://Doi.org/10.1051/meca/2017052.

17. Mokrickiy, B.Ya. Povyshenie kachestva instrumental'nogo obespecheniya / B.Ya. Mokrickiy, T.I. Usova, A.G. Serebrennikova // Uprochnyayuschie tehnologii i pokrytiya. – 2019. – T. 15. - № 8. – S. 381-384.

18. Mokrickiy, B.Ya. Upravlenie vyborom uprochnyayuschego instrumenta na osnove modelirovaniya v programmnoy srede Deform / B.Ya. Mokrickiy, E.S. Sitamov, V.Yu. Vereschagin, O.G. Shakirova // Uprochnyayuschie tehnologii i pokrytiya. – 2019. - № 6(174). – S. 249-251.

19. Sitamov, E.S. Ocenka iznosostoykosti tverdosplavnogo instrumenta pri obrabotke nerzhaveyuschey stali / E.S. Sitamov, B.Ya. Mokrickiy, O.G. Shakirova // Uchenye zapiski Komsomol'skogo-na-Amure gosudarstvennogo tehnicheskogo universiteta. – 2019. - № 3(39). – S. 109-112.

20. Mokrickiy, B.Ya. Ocenka iznosostoykosti instrumental'nyh pokrytiy na osnove imitacionnogo modelirovaniya / B.Ya. Mokrickiy, E.S. Sitamov // Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta. – 2020. - №2(151). – 295-302.

Login or Create
* Forgot password?