The problem of time periodic solutions of a wave equation with floating factors of a general type and a specified periodic driving force is considered. In case of homogeneous boundary conditions of the third type and Dirichlet the existence of a denumerable number of periodic solutions at the condition that a nonlinear item has a power growth without the assumption of monotony is proved.
wave equation, variational method, even functional disturbance
1. Barby, V. Periodic solutions to nonlinear one dimensional wave equation with x - dependent coefficients/ V.Barby, N.H.Pavel // Trans. Amer. Math. Soc.-1997.-V. 349. - № 5.- P. 2035-2048.
2. Rabinowitz, P. Free vibration for a semilinear wave equation/ P. Rabinowitz//Comm. Pure Aple. Math.-1978.- V. 31.- № 1.- P. 31-68.
3. Bahri, A. Periodic solutions of a nonlinear wave equation/A. Bahri, H. Brezis// Proc. Roy. Soc. Edinburgh Sect. A. - 1980.- V. 85. - P. 3130-320.
4. Brezis, H. Forced vibration for a nonlinear wave equations/ H. Brezis, L. Nirenberg //Comm. Pure Aple. Math.-1978.- V. 31. - № 1.- P. 1-30.
5. Plotnikov, P.I. Existence of denumerable set for periodic solutions of problem on forced oscillations for weakly nonlinear wave equation/P.I. Plot-nikov// Mathematical Collection. -1988.-Т. 136(178).- № 4(8). - pp. 546-560.
6. Feireisl, E. On the existence of periodic solutions of a semilinear wave equation with a superlinear forc-ing term/ E. Feireisl //Chechosl. Math. J.- 1988.-V. 38.- № 1.- P.- 78-87.
7. Rudakov, I.А. Nonlinear string oscillations/ I.А. Rudakov//Bulletin of MSU. Series. 1, Mathem., Mech. - 1984.- № 2. - pp. 9-13.
8. Rudakov, I. А. Periodic solutions of nonlinear wave equation with variable coefficients/ I. А. Rudakov //Mathematical Notes. -2004. -Vol. 76.- Issue. 3. - pp. 427-438.
9. Shuguan, J. Time periodic solutions to a nonlinear wave equation with - dependent coefficients/ J. Shuguan//Calc. Var. -2008.-V. 32. - P. 137-153.
10. Rudakov, I.А. Periodic solutions of quasilinear wave equation with variable coefficients/ I.А. Ru-dakov //Mathematical Collection. -2007.-Vol. 198.- № 4(8). - pp. 546-560.
11. Rudakov, I.А. On time periodic solutions of quasi-linear wave equation / I.А. Rudakov // Proceedings of MIAN. -2010. - Vol. 270. - pp. 226-232.
12. Rudakov, I.А. Periodic oscillations of heterogene-ous string with fixed and free end parts / I.А. Ruda-kov// Bulletin of Bryansk State Technical University. - 2015. - № 3(47). - pp. 83-93.
13. Rudakov, I.А. Periodic solutions of wave equation with non-constant coefficients and homogeneous boundary conditions of Dirichlet and Neuman I.А. Rudakov// Differential Equations. -2016. - Vol. 52. - № 2. - pp. 247-256. - URL: http://nasb.gov.by/eng/publications/difur/index.php.
14. Trikomi, F. Differential Equations/ F.Trikomi. - М.: URSS, 2003.- pp. 351.
15. Tanaka, K. Infinitely many periodic solutions for the equation: II/K. Tana-ka//Trans. Amer. Math. Soc.-1988.-V. 307. -P. 615-645.
16. Rabinowitz, P.H. Multiple critical points of perturbed symmetric functionals/ P.H. Rabinowitz//Trans. Amer. Math. Soc.-1982.-V. 272. - P. 753-769.
17. Bahri, A. Topological results on a certain class of functionals and applications/A.Bahri, H.Berestycki//Trans. Amer. Math. Soc.-1981.-V. 267.-№ 1.-P. 1-32.
18. Rudakov, I.А. Periodic solutions of quasilinear equation of beam forced oscilla-tions/I.А.Rudakov//Proceedings of RAS. Series Math.-2015.-Vol. 79. -№ 5.-pp. 215-238.