УДК 621:658.011.56 DOI:10.30987/2223-4608-2020-2021-1-15-23

> **И.Л. Пыриков,** к.т.н. (ФГБОУ ВО Брянский государственный технический университет, 241035, г. Брянск, бульвар 50 лет Октября, 7) E-mail: i.pyrikov@mail.ru

Технологическое обеспечение эксплуатационных свойств плоских поверхностей скольжения

Приведены экспериментальные исследования износостойкости, контактной жесткости и антифрикционных свойств плоских поверхностей при их относительном скольжении. Описано технологическое обеспечение параметров качества плоских поверхностей трения после их напыления и упрочнения.

Ключевые слова: контактная жесткость; плоская поверхность; покрытие; скольжение; качество; трение; износ; эксперимент; шероховатость; приработка; корреляция; обработка.

I.L. Pyrikov, Can. Sc. Tech. (FSBEI HE Bryansk State Technical University, 7, 50 October Years Boulevard, Bryansk, 241035)

Technological support of operation properties in flat sliding surfaces

There are shown experimental investigations of wear-resistance, contact stiffness and anti-friction properties of flat surfaces at their relative sliding. A technological support of quality parameters in flat friction surfaces after their sputtering and strengthening is described.

Keywords: contact stiffness; flat surface; coating; sliding; quality; friction; wear; experiment; roughness; run-in; correlation; machining.

Одним из перспективных способов технологического воздействия на эксплуатационные свойства плоских поверхностей скольжения является упрочнение напылением износостойких покрытий [1]. Были проведены экспериментальные исследования износостойкости, контактной жесткости и антифрикционных свойств, связанных с применением метода упрочнения направляющих скольжения и обеспечению необходимых микрогеометрических параметров качества плоских поверхностей в зоне контакта.

Для исследования контактного взаимодействия плоских поверхностей выбраны следующие пары трения: «чугун – молибден» (покрытие); «чугун – сталь» (покрытие); «чугун – чугун». Все нижние образцы (30х54х300 мм) были изготовлены из чугуна СЧ21-40 (ГОСТ 1412-70). Верхние образцы диаметром 20 мм изготавливались из чугуна СЧ21-40 с последующим плазменным напылением на поверхность трения молибдена МЧ (ТУ-48-42-7-70) и стали 65Г (ГОСТ 14659-69). Толщина напыленного слоя составила до обработки 0,8...1,2 мм и после обработки – 0,5... 0,7 мм, пористость покрытий находилась в пределах 5...10 %.

При проведении сравнительных испытаний отделочная обработка рабочих поверхностей образцов проводилась шлифованием периферией круга (24A40-25CM2K). Режимы обработки обеспечивали шероховатость образцов в пределах Ra = 0,7...0,8 мкм; Ra = 0,3...0,36 мкм и Ra = 0,06...0,08 мкм.

Для проведения комплексных исследований контактной жесткости и износостойкости была спроектирована и изготовлена специальная установка, позволяющая воспроизводить режим работы близкий к реальным условиям эксплуатации направляющих скольжения металлорежущих станков и фиксировать величину нормальной нагрузки, контактные перемещения, износ и коэффициент трения образцов. Регистрация величины износа нижних образцов осуществлялась методом профилографирования. Износ верхних неподвижных образцов определялся методом искусственных баз. Путь трения нижних образцов – 2,4 км, верхних – 24 км определялся экспериментально по стабилизации коэффициента трения,

т.е. при выходе в зону нормального износа.

В качестве исследуемых факторов были приняты: $q_{\rm H}$ – номинальное давление на стык (МПа); v – скорость относительного скольжения образцов в условиях возвратнопоступательного движения (м/мин); М – материал контактирующих поверхностей; *Ra* – среднее арифметическое отклонение профиля по ГОСТ 2789-73, Причем каждый из исследуемых факторов варьировался на трех уровнях (табл. 1).

Уровни	Уровни давление		Шероховатость исходной поверхности	Материал поверхно- стей трения	
факторов	$q_{\scriptscriptstyle m H}$, МПа	v, м/мин	<i>Ra</i> , мкм	М	
Код уровня	a_i	b_j	C_k	d_l	
1	0,5	1,0	0,06	чугун – чугун	
2	1,5	5,0	0,32	молибден – чугун	
3	2,5	9,0	0,7	сталь – чугун	

1. Уровни исследуемых факторов

Значения факторов *q*_н и v принимались исходя из реальных условий эксплуатации большинства металлорежущих станков. Принятые значения шероховатости *Ra* являются типичными для направляющих скольжения станков нормальной и повышенной точности [2].

Исследования проводились по плану греколатинского квадрата 3х3, математическая модель которого представляется в виде:

$$y_{ijkl} = \mu + a_i + b_j + C_k + d_l + \varepsilon_{ijkl},$$

где y_{ijkl} – экспериментальный результат; μ – общий эффект взамодействий; a_i – эффект, обусловленный влиянием фактора $q_{\rm H}$; b_j – эффект, обусловленный влиянием фактора v; C_k , – эффект, обусловленный влиянием фактора Ra; d_l – эффект, обусловленный влиянием фактора M; ε_{ijkl} – случайная ошибка эксперимента.

Обработка результатов экспериментов производилась методами дисперсионного анализа, множественного рангового сравнения средних значений, и методами множественного корреляционно-регрессионного анализа.

Контактные сближения определялись в условиях неподвижного контакта без смазки, при наличии смазки и в условиях трения скольжения (подвижный стык). Сравнительные испытания проводились при ступенчатом изменении нагрузки от 0,15 до 2,5 МПа и скорости скольжения от 0,02 до 9,0 м/мин. В качестве смазки использовалось масло ИС-20 вязкостью 17...23 сСт при 50 °С по ГОСТ 20799-74.

Результаты экспериментальных данных показывают, что без скольжения величина контактных перемещений приработанных поверхностей меньше, чем не приработанных. Так, для не приработанной пары трения «чугун – чугун» средние контактные перемещения при q = 2,5 МПа и Ra = 0,7 мкм составляют 1,7 мкм, а после приработки – 0,55 мкм.

Контактные перемещения напыленных образцов больше, чем ненапыленных как приработанных, так и неприработанных пар, что может быть объяснено пористостью напыленных покрытий и деформацией подложки напыленного слоя. Так, контактные перемещения приработанных несмазанных поверхностей в стыках «чугун – чугун», «чугун – молибден», «чугун – сталь» (q = 2,5 МПа) составили соответственно 0,55; 1,0 и 1,0 мкм, а для неприработанных (Ra = 0,32 мкм) – 1,1; 1,5 и 1,65 мкм. Кривые контактного сближения в стыке «чугун – молибден» без скольжения приведены на рис.1.

После пяти нагружений сближения в смазанных стыках «чугун – сталь», «чугун – молибден» мало отличаются от сближения в несмазанных стыках. Это объясняется тем, что в случае пористых напыленных поверхностей смазка под действием нагрузки продавливается в поры. Для смазанного стыка «чугун – чугун» сближение имеет на 10...20 % меньшую величину, чем для несмазанного стыка, что подтверждается в работе [3]. В этом случае часть нагрузки воспринимается смазкой, находящейся в замкнутых микрорезервуарах между неровностями.

Для приработанных поверхностей подвижных стыков изменение скорости скольжения оказывает доминирующее влияние на величину контактных перемещений. До скорости скольжения v = 5,0 м/мин наблюдается интенсивный рост контактных перемещений, а при скоростях близких к 9,0 м/мин наблюдается снижение интенсивности их роста.

Рис. 1. Кривые контактного сближения в стыке «чугун – молибден» без скольжения: *1* – смазанный; *2* – сухой стык до приработки; *3* – смазанный; *4* – сухой стык после приработки

Величина контактных сближений подвижных стыков зависит от характера трения (граничное или жидкостное). Например, скоростям скольжения от 0,02 м/мин ДО 1,0...4,0 м/мин соответствуют высокие значения коэффициента трения (рис. 3) и меньшие контактные деформации (1,4...1,8 мкм при q = 2,5 МПа) (рис. 2), по сравнению с более высокими скоростями, при которых наблюдается режим близкий к жидкостному трению и большая податливость стыка (3,0...4,2 мкм при *q* = 2,5 МПа).

Результаты исследования износостойкости показывают, что величина износа в период приработки нижнего чугунного образца существенно зависит от материала сопрягаемой поверхности и исходной шероховатости. Так, наименьший износ чугунного образца в исследованном диапазоне скоростей и нагрузок наблюдается в паре «чугун – молибден», так как в зоне контакта этой пары образуется устойчивая пленка дисульфида молибдена, которая резко снижает трение. Поры в покрытии служат микрокарманами для смазки, которая подпитывает зону контакта, исключая сухое трение. Повышение исходной шероховатости с Ra = 0,32 мкм до Ra = 0,7 мкм увеличивает приработочный износ в 3,0 - 3,5 раза, а изменение шероховатости с Ra = 0.32МКМ

Ra = 0,06 мкм несущественно снижает износ.

Основное влияние на интенсивность нормального износа нижних образцов из чугуна оказывает материал верхних образцов и давление в контакте. Повышение давления с 0,5 до 2,5 МПа увеличивает интенсивность износа с 0,9·10⁻¹⁰ до 3,4·10⁻¹⁰, т.е. почти в 3,5 раза, что связано, по мнению авторов, с изменением режима трения.

Замена материала поверхности трения верхнего образца с чугуна на молибден или сталь 65Г позволяет снизить интенсивность износа нижних образцов соответственно в 1,8 – 2,0 или 1,4 – 1,6 раза. При этом поверхности трения верхних образцов, напыленные молибденом, изнашиваются в 1,5 – 2,0 раза меньше, а напыленные сталью 65Г в 1,2 – 1,4 раза больше, чем не напыленные.

На коэффициент трения исследованных пар доминирующее влияние оказывают скорость относительного скольжения и материал контактирующих поверхностей. Уменьшение коэффициента трения f с 0,2...0,16 ДО 0,007...0,012 при увеличении скорости относительного скольжения связано с переходом от граничного трения к жидкостному (см. рис. 3, б). В интервале скоростей скольжения от 1,0 до 4,0 м/мин происходит резкое уменьшение коэффициента трения. При дальнейшем увеличении скорости скольжения коэффициент трения остается постоянным. Стабилизация коэффициента трения приработанных пар «чугун – чугун» и «чугун – сталь» наступает при скорости скольжения 1,0...2,0 м/мин при различных нагрузках. Из исследованных пар меньшее значение коэффициента трения имеет пара «чугун – молибден» как в зоне приработки, так и в зоне нормального износа (см. рис. 3).

Результаты исследований показывают, что после приработки устанавливается равновесная шероховатость, что подтверждается работой [4] и др. Так, при исходной шероховатости Ra = 0,7 мкм приработанная поверхность нижних образцов ($L_{\rm Tp} = 2,4$ км) имела шерохо-

ватость Ra = 0,11...0,32 мкм, верхних контртел ($L_{\rm тр} = 24$ км) – Ra = 0,12...0,22 мкм. Относительная длина опорной линии профиля шероховатости на уровне средней линии увеличивается с 49...51 % до 60 %, уменьшается шаг неровностей профиля шероховатости *Sm*.

Рис. 2. Кривые контактного сближения подвижного стыка («чугун – молибден»): *а* – в начале приработки; *б* – в зоне нормального износа. Скорости относительного скольжения v: *1* – 9, 0 м/мин; *2* – 5,0 м/мин; *3* – 1,0 м/мин; *4* – 0,02 м/мин; *5* – 0 м/мин

Исследование формирования параметров шероховатости трущихся плоских поверхностей позволяет наметить пути их технологического обеспечения с целью сокращения периода приработки. Управление закономерностями формирования качества поверхности при технологической обработке способствует получению оптимального микропрофиля с необходимыми характеристиками. Одним из перспективных методов отделочной обработки является суперфиниширование эластичными алмазными брусками. Обработка эластичными алмазными брусками, по сравнению с другими технологическими процессами, обеспечивает ряд преимуществ, в том числе высокую интенсивность съема металла, благодаря большей режущей поверхности и малую напряженность теплового потока, что способствует устранению прижогов. Возникают более благоприятные условия для работы зерен, которые имеют возможность самоустанавливаться и нивелироваться по высоте, причем нагрузка равномерно распределяется между ними. Вследствие постоянной подвижности зерен создаются хорошие условия для размещения и удаления стружки и шлама, что исключает засаливание инструмента. Все это улучшает качество обработанной поверхности.

Рис. 3. Изменение коэффициента трения пары «чугун – молибден» до приработки (*a*) и после приработки (*б*): исходная шероховатость *Ra* = 0,32 мкм; смазка ИС-20

Решение задачи технологического управления параметрами шероховатости, как показано

в работах [5, 6] и др., возможно на основе учета корреляционных и функциональных зави-

симостей между отдельными параметрами, закономерностей технологической наследственности и математико-статистических моделей технологических процессов. В данной работе рассматривается пример такого управления при вибрационной обработке алмазными эластичными брусками плоских поверхностей из чугуна СЧ21-40, а также напыленных молибденом, с целью обеспечения параметров шероховатости близких к параметрам равновесной шероховатости формирующейся в зоне трения.

Вибрационная алмазная обработка проводилась на плоскошлифовальном станке с помощью устройства с приводом для осциллирующего движения алмазного бруска. Эластичные бруски состояли из стального основания и эластичного подслоя (резина), а в качестве рабочего слоя в них использовались конечные ленты из алмазов АСО, 100 %-ной концентрации на полужесткой связке Р9. Номинальная площадь рабочей поверхности алмазного бруска составляла 4,9 см². Частота его осцилляции была постоянной – 1460 двойных ходов в минуту с амплитудой 4 мм. Площадь обработки равнялась 30х70 = 2100 мм². Эксперименты осуществлялись при обильном охлаждении СОЖ, состоящей из керосина (79 %); веретенного масла (20 %) и олеиновой кислоты (1 %). Перед началом опытов новые алмазные ленты прирабатывались по поверхности отдельного образца с исходной шероховатостью *Ra* = 0,7...0,8 мкм при давлении бруска q = 0.3 МПа в течение 120 секунд. Для экспериментов использовались ленты, имеющие специальные рифления для лучшего подвода смазочно-охлаждающей жидкости в зону резания.

Задачу технологического управления параметрами шероховатости поверхности при обработке алмазными эластичными брусками решали с использованием метода планирования экстремального эксперимента. Однако при планировании эксперимента необходимо выявить монотонную область изменения выходных параметров; установить интервалы варьирования входных факторов; выбрать вид модели и решить целый ряд других вопросов. Для ответа на них были реализованы однофакторные эксперименты по определению влияния условий обработки на параметры шероховатости обрабатываемой поверхности.

В качестве независимых переменных были приняты: скорость перемещения стола v (заготовки) от 2,0 до 16 м/мин; номинальное давление бруска на обрабатываемую поверхность детали q от 0,1 до 0,6 МПа; зернистость брусков k от 50/40 до 125/100 и время обработки t от 5,0 до 50 с. Исходная высота неровностей профиля шероховатости после предварительной обработки периферией круга находилась в пределах 0,215...0,76 мкм.

Анализ результатов экспериментов показывает, что основное влияние на формирование шероховатости оказывает зернистость алмазного бруска k и время обработки. Влияние времени обработки сказывается в первые 20...30 с, затем оно практически не оказывает воздействия на формирование микропрофиля, так как за это время предшествующая шероховатость полностью исчезает. В начальный период обработки контактирование инструмента и заготовки происходит по отдельным неровностям обрабатываемой поверхности. После первых 15...20 с на микровыступах обрабатываемой поверхности образуются площадки, которые приводят к большому числу контактирования зерен инструмента с поверхностью детали.

Упругие свойства каучукосодержащих связок и эластичного подслоя способствуют участию в процессе обработки большого числа зерен. В связи с этим усилие, приходящееся на единичное зерно, снижается, глубина следов обработки становится меньше и съем металла уменьшается, что приводит к постепенному переходу процесса резания в режим полирования. Уменьшается не только высотная характеристика, но и шаг неровностей Sm и комплекс Δ . Следует отметить, что, несмотря на различную исходную шероховатость Ra = 0.76 мкм и Ra = 0.28 мкм, через 30... 40 секунд обработки, конечная шероховатость стабилизируется на одинаковом уровне, зависящим от зернистости алмазной ленты.

Заметное влияние на характеристики шероховатости оказывает скорость перемещения детали. Так, шаг неровностей монотонно уменьшается с увеличением скорости, а изменение параметра Ra и комплекса Δ имеют максимум при 10 м/мин (в этом случае угол наклона следов обработки около 45°). При соотношении скорости детали и скорости осцилляции бруска близкому к единице, режущая способность брусков наибольшая, что приводит к росту шероховатости.

Повышение усилия прижатия бруска к детали способствует большему внедрению зерен инструмента в обрабатываемую деталь, что приводит к увеличению съема металла и уменьшению Ra и Sm, а комплексный параметр шероховатости Δ практически не изменяется. Однако дальнейшее увеличение давления (более 0,3 МПа) приводит к росту шероховатости, при этом шаг *Sm* не меняется.

Увеличение зернистости в исследованном диапазоне приводит к росту Ra, Sm, Δ . Минимальное значение параметра шероховатости (Ra = 0,075 мкм) достигается при обработке брусками с зернистостью 50/40.

Анализ зависимостей между отдельными параметрами неровностей показывает [5], что некоторые из них, в частности *Ra*, *Rp*, и *R*max находятся в тесной корреляционной связи, близкой к функциональной. Это означает, что обеспечение при механической обработке одного параметра приводит к автоматическому получению других, величина которых зависит от принятого технологического метода обработки. Параметр *tm*, например, может стабилизироваться относительно некоторых значений, присущих определенному технологическому методу обработки.

Коэффициенты парной корреляции между *Ra* и отдельными параметрами неровностей при вибрационной обработке алмазными эластичными брусками приведены в табл. 2.

Как видно из представленных данных (табл. 2), между высотными параметрами Ra, Rp и Rmax существует почти функциональная связь, между Ra и шаговым параметром Sm – довольно тесная корреляционная. Таким образом, технологическое управление параметрами Ra и Rmax возможно на основе соотношений $k_p = Rp/Ra$ и $k_h = R\max/Ra$, параметром Sm – на основе регрессионных зависимостей. Параметры Ra, tm и ρ_m оказываются некоррелированными.

2. Коэффициенты парной корреляции

Обрабатываемый материал	Rp	Rmax	tm	Sm	ρ _m	Критическое значение коэффициента
Чугун СЧ21-40	0,977	0,974	0,234	0,782	-0,138	$r_{0,95} = 0,412$
Молибден	0,986	0,989	-0,070	0,752	-0,146	$r_{0,95} = 0,582$

Для оценки влияния технологических факторов на параметры шероховатости при алмазной вибрационной обработке, а также для получения математико-статистических моделей процесса проведены дробные факторные эксперименты: 2⁵⁻¹ и 2⁴⁻¹ (соответственно при обработке чугуна СЧ21-40 и поверхностей, напыленных молибденом). На основании ранее проведенных однофакторных экспериментов при обработке чугуна были выбраны следующие технологические факторы и интервалы их варьирования: скорость перемещения заготовки v (10...18 м/мин); номинальное давление алмазного бруска на обрабатываемую поверхность q (0,1...0,5 МПа); зернистость kалмазного бруска (125/100, 80/63, 50/40); время обработки t (5...60 c); исходная шероховатость поверхности *Ra*исх (0,67... 0,30 мкм). Чугунные поверхности предварительно шлифовали периферией абразивного круга 24А40СМ25К6, применяя в качестве СОЖ 20 %-ный водный раствор эмульсола. Предварительная обработка поверхностей, напыленных молибденом, осуществлялась абразивным кругом КЗ40 СМ1 К6. Режимы обработки и правки круга обеспечивали исходную шероховатость *Ra*исх поверхностей около 0,53 мкм.

Остальные технологические факторы при окончательной обработке молибдена оставались без изменений, лишь фактор *t* варьировался в интервале 10...60 с.

Дисперсионный анализ экспериментальных результатов (табл. 3, 4), а также сравнение средних результатов (рис. 4) позволяют сделать следующие выводы. Параметр *Ra* при вибрационной обработке эластичными алмазными брусками формируется под воздействием фактора t, затем q и k. Влияние фактора *Ra*исх указывает на необходимость учета закономерностей технологической наследственности при отделочной вибрационной алмазной обработке. На соотношения k_p , k_h исследованные технологические факторы не воздействуют, т.е. для принятых интервалов изменения входных факторов характерны постоянные значения k_p и k_h . Несмотря на значимость влияния факторов q и k на параметр tm при обработке чугуна, можно принять, что для указанных условий обработки *tm* стабилизируется около некоторой величины, поскольку средние значения, соответствующие разным уровням факторов q и k, отличаются несуществен-HO.

Следовательно, в целях технологического управления параметрами шероховатости при вибрационной обработке алмазными эластичными брусками могут быть использованы уравнения:

при обработке поверхностей из чугуна СЧ21-40:

$$Ra = 0,117t^{-0,285}Ra_{\text{HCX}}^{0,438}q^{-0,279}k^{0,452}; (1)$$
$$k_p = \frac{Rp}{Ra} = 2,92 \pm 0,33; (2)$$

$$k_h = \frac{R \max}{Ra} = 6,39 \pm 0,49;$$
 (3)

$$tm = 52.6 \pm 1.5\%$$
 (4)

$$Sm = a_0 R a^{a_1} = 59,2R a^{0,41};$$
 (5)

<u>при обработке поверхностей, напыленных</u> <u>молибденом:</u> $Ra = 0,095t^{-0,368}q^{-0,252}k^{0,51};$ (6) $k_p = 2,91 \pm 0,62;$ (7) $k_h = 6,64 \pm 0,78;$ (8) $tm = 52,8 \pm 4,1\%;$ (9)

$$Sm = 62,8Ra^{0,458}.$$
 (10)

of i cognibilities difference of a manifestion of the second of the analysis of the second of the se	3.	Результаты дисперсионного	анализа экспериментов	по обработке алм	азными брусками	чугуна СЧ2	1-4	0
--	----	---------------------------	-----------------------	------------------	-----------------	------------	-----	---

		Параметры шероховатости								
	Число	Ra		k_p		k_h		tm		
Фактор	степеней свободы	Средний квадрат	<i>F-</i> отно- шение	Средний квадрат	<i>F-</i> отно- шение	Средний квадрат	<i>F-</i> отно- шение	Средний квадрат	<i>F</i> - отно- шение	
Скорость перемещения заготовки	1	0,0009	<1	0,0343	<1	0,6642	1,73	0,6084	<1	
Давление бруска	1	0,0325	7,56	0,3156	1,75	0,5013	1,30	36,3609	10,71	
Зернистость алмазной ленты	1	0,0221	5,15	0,00003	<1	0,8902	2,31	45,0912	13,28	
Время обработки	1	0,0876	20,4	0,0621	<1	0,0002	<1	0,1892	<1	
Исходная шероховатость	1	0,0349	8,11	0,1094	<1	0,0571	<1	9,0902	2,68	
Ошибка	10	0,0043		0,1804		0,3846		3,3959		
Итог (для сум- мы квадратов)	15	0,2240		2,3251		5,9588		125,2988		
Примечание. Критические значения F-отношений 0,054,96										

4. Результаты дисперсионного анализа экспериментов по обработке алмазными брусками

покрытий молибденом

		Параметры шероховатости								
Фактор	Число	Ra		k_p		k_h		tm		
	степеней свободы	Средний квадрат	<i>F-</i> отно- шение	Средний квадрат	<i>F-</i> отно- шение	Средний квадрат	<i>F-</i> отно- шение	Средний квадрат	<i>F-</i> отно- шение	
Скорость перемещения заготовки	1	0,0014	<1	0,3042	1,99	0,1755	<1	5,780	<1	
Давление бруска	1	0,0145	6,28	0,4141	2,77	0,3204	1,34	17,405	2,57	
Зернистость алмазной лен- ты	1	0,0178	7,67	0,0001	<1	0,7411	3,10	21,780	3,22	
Время обработки	1	0,0422	18,22	0,0095	<1	0,1334	<1	0,005	<1	
Ошибка	3	0,0023		0,1532		0,2388		6,757		

Наукоёмкие технологии в машиностроении, № 1, 2021

Итог (для сум- мы квадратов)	7	0,0828		1,1889		2,0869		65,240	
Примечание. Критические значения <i>F</i> -отношений 0,105,54									

Исходя из близости числовых значений коэффициентов в системах уравнений, можно предположить, что физико-механические свойства исследованных материалов практи-

чески не влияют на формирование параметров неровностей. Для параметров k_p , k_h и tm в уравнениях (1) – (10) указаны 95 %-ные доверительные интервалы.

Рис. 4. Результаты после дисперсионного анализа (сравнение средних) при алмазной вибрационной обработке чугуна СЧ21-40

Постоянство величин k_p , k_h и *tm* означает, что для принятых условий алмазной обработки распределение материала неровностей в верхних слоях, характеризуемое параметрами v, *b* и *tp* (при $p \le 40$ %), остается неизменным.

Числовые значения этих параметров определяются по уравнениям:

$$\nu = 0.02tm k_p - 1;$$
(11)
$$b = 0.01tm (k_h/k_p)^{0.02t_m k_p - 1};$$
(12)

$$tp = b(0,01p)^{\nu}.$$
 (13)

Вычисления по уравнениям (11) – (13) дают v = 2,07 и b = 2,66 (при обработке чугуна), v = 2,07 и b = 2,92 (при обработке молибдена).

Для технологического управления параметрами ρ_m и Δ могут быть использованы уравнения, полученные на базе функциональных соотношений:

$$\rho_m = \frac{(0,01tm)^3 Sm^2}{6Ra} = \frac{1}{6}a_0^2(0,01tm)^3 Ra^{2a_1-1};$$
(14)

$$\Delta = \frac{Rp}{\rho_m (0,01tm)^{1/\nu}} = \frac{6k_p}{a_0^2 (0,01tm) \frac{3\nu+1}{\nu} Ra^{2a_1-2}}.$$
(15)

Для рассматриваемых условий вибрационной алмазной обработки уравнения (14) – (15) упрощаются и принимают вид:

при обработке чугуна:

$$\rho_{\rm m} = 85,08Ra^{-0,18}; \quad \Delta = 0,047Ra^{1,18};$$

при обработке молибдена:

$$\rho_{\rm m} = 96,68Ra^{-0.084}; \quad \Delta = 0,041Ra^{1.084}.$$

Таким образом, технологическое управление параметрами шероховатости при вибрационной обработке алмазными эластичными брусками возможно на основе обеспечения определенного значения параметра *Ra* с учетом корреляционных и функциональных зависимостей, существующих между отдельными параметрами неровностей.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Хасуй, А. Техника напыления. – М.: Машиностроение, 1975. – 288 с.

2. Суслов, А.Г. Технологическое обеспечение контактной жесткости соединений. – М.: Наука, 1977. – 104 с.

3. Левина, З.М., Решетов, Д.Н. Контактная жесткость машин. – М.: Машиностроение, 1971. – 264 с.

4. Костецкий, Б.И. Трение и износ в машинах. – Киев: Техника, 1970. – 396 с.

5. Инженерия поверхностей деталей / Колл. авт.; под ред. А.Г. Суслова. – М.: Машиностроение, 2008. – 320 с.

6. Суслов, А.Г., Федоров, В.П., Горленко, О.А. и др. Технологическое обеспечение и повышение эксплуатационных свойств деталей и их соединений / Под общ. ред. А.Г. Суслова. – М.: Машиностроение, 2006. – 448 с.

REFERENCES