УДК 621.891.2: 621.822 DOI: 10.12737/22017

А.Ю. Албагачиев, В.Д. Данилов

МАГНИТНАЯ ЖИДКОСТЬ В РЕЖИМЕ ГИДРОДИНАМИЧЕСКОЙ СМАЗКИ СФЕРИЧЕСКИХ ПОВЕРХНОСТЕЙ

С позиции гидродинамической теории смазки рассмотрены характеристики магнитожидкостной смазки в точечном контакте. Решением гидродинамической задачи получено аналитическое выражение, с помощью которого определена несущая

способность слоя магнитной жидкости в зависимости от толщины, вязкости и скорости.

Ключевые слова: магнитная смазка, гидродинамика, давление, толщина слоя, вязкость, скорость.

A.Yu. Albagachiev, V.D. Danilov

MAGNETIC LIQUID IN HYDRODYNAMIC LUBRICATION MODE OF SPHERICAL SURFACES

From the position of the hydrodynamic lubrication theory are considered the peculiarities of magneto-liquid lubrication in a point contact determined with a complicated character of the interaction of hydrodynamic and magnetic forces in a lubrication layer. The pressure distribution in a lubrication layer of magnetic liquid is considered as a super-position of the augend and addend p^e and p^m induced with hydrodynamic and magnetic forces. The contribution of the constituent p^e is described by Reynolds equation in accordance with the classic hydrodynamic theory. At the saturation of magnetic liquid the constituent p^m is

presented as a function of the magnetic field strength, saturation magnetization of magnetic liquid and its viscosity and also velocity of rolling. As a result of the solution of a hydrodynamic problem through a numerical method there are defined conditions under which a lubrication layer loses its stability that is followed with the loss of carrying capacity in areas with negative pressure. The dependences of resistance to rolling forces, and sliding ones in a contact of spherical surfaces.

Key words: magnetic lubrication, hydrodynamics, pressure, layer thickness, viscosity, velocity.

Интерес к магнитной жидкости (МЖ) связан в первую очередь с возможностью использования её в качестве смазочного материала, что обусловливается её структурой и возможностью удержания в зоне трения при помощи магнитного поля. Выдавливаемая из зоны контакта магнитная жидкость под действием магнитных сил возвращается обратно, восстанавливая тем самым разрушенный смазочный слой. Решения гидродинамической задачи применительно к линейному контакту показали эффективность магнитной жидкости в смазке различных типов зубчатых передач, подшипников скольжения и других механизмов. В настоящей работе представлены результаты решения гидродинамической задачи для точечного контакта.

Физическая модель точечного кон-

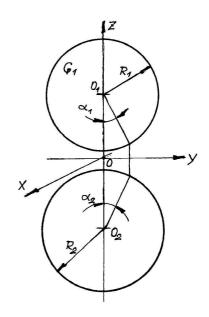


Рис. 1. Физическая модель точечного контакта

такта представлена на рис.1, где R_1 и R_2 (R_1 < R_2) - радиусы сферических гладких, жестких и катящихся со скольжением поверхностей. В системе координат xyz ось oz направлена вдоль линии, соединяющей центры O_1 и O_2 .

Зазор между поверхностями описывается зависимостью

$$h=h_0+(x^2+y^2)/2R$$
,

где h_o - минимальный зазор между поверхностями; R - приведенный радиус кривизны поверхностей.

Считаем, что скорости точек поверхностей направлены вдоль оси x (в месте наибольшего сближения поверхностей, т.е. при x = y = 0). Уравнение Рейнольдса для p^2 запишем в виде

$$\frac{\partial}{\partial x}(h^3\frac{\partial p^2}{\partial x}) + \frac{\partial}{\partial y}(h^3\frac{\partial p^2}{\partial y}) = 12\eta U\frac{\partial h}{\partial x},$$

где $U=(U_1+U_2)/2$ - скорость качения поверхностей; η - вязкость МЖ.

Составляющая p^{M} при насыщении МЖ определяется по соотношению

 $p^{M} = \mu_{o}M_{s}H_{max}/h_{0}$, где $\mu_{o}=1,256\cdot10^{-6}$ Гн/м; M_{S} - намагниченность насыщения МЖ; H_{max} - напряженность магнитного поля в зазоре на оси Oz.

Распределение давлений в слое МЖ в области точечного контакта зависит от параметра

$$q = \frac{\mu_0 M_S H_{\text{max}} h_0}{12 \eta \sqrt{2Rh_0} U}.$$

Из решенных гидродинамических задач при параметре q, изменявшемся в широком диапазоне, на рис. 2 приведено распределение давления при q=0,08. Видно, что при этом значении q на плоскости Oxy имеется область, в которой функция p(x,y) отрицательна. В этой области происходит разрушение смазочного слоя МЖ. Критическое значение q составляет 0,1. При q > 0,1 магнитная жидкость заполняет полностью зазор между поверхностями.

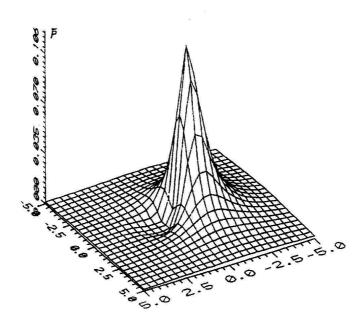


Рис. 2. Распределение давления при q=0,08

Несущая способность смазочного слоя МЖ определяется зависимостью

$$W = \frac{1,2\pi\eta(2Rh_0)^{3/2}U}{h_0^2} + 48\mu_0 Rh_0 M_S H_{\text{max}}.$$

Гидродинамическая составляющая (первый член зависимости) определяется

параметром

$$\overline{W} = \iint_{D} \overline{p^{\varepsilon}(x, y)} dx dy.$$

Зависимость \overline{W} от q представлена на рис. 3.

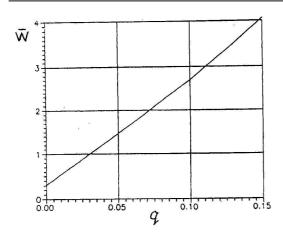
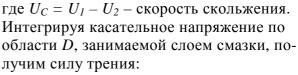



Рис. 3. Влияние q на \overline{W}

Можно заключить, что составляющая несущей способности слоя МЖ, обусловленная взаимодействием магнитного поля с магнитной жидкостью, пропорциональна минимальной толщине слоя h_0 и не зависит от вязкости МЖ и скорости.

Сила трения определяется касательным напряжением на оси Ox (действующим на тело G_1):

$$\tau_{x} = \eta \frac{U_{C}}{h} + \frac{h}{2} \frac{\partial p}{\partial x},$$

$$F_{mp} = \eta U_C \iint_D \frac{dxdy}{h} + \frac{1}{2} \iint_D h \frac{\partial p}{\partial x}.$$

Переходя к безразмерным переменным, получим:

$$F_{mp} = \eta \frac{U}{h_0} (\frac{U_C}{U} \overline{F}_{mp.c} + \overline{F}_{mp.\kappa}),$$

где

$$\overline{F}_{mp.c} = \iint_{D} \frac{d\overline{x}d\overline{y}}{h}; \ \overline{F}_{mp.\kappa} = 6 \iint_{D} \overline{h} \frac{\partial \overline{p}}{\partial \overline{x}} \partial \overline{x} \partial \overline{y}.$$

Ввиду сложности области D интегралы решаются численно. На рис. 4 приведена зависимость $F_{mp.c}$ от q: с ростом q значения $F_{mp.c}$ увеличиваются. Значения $F_{mp.\kappa}$ с ростом q (рис. 5) уменьшаются. Это обусловлено тем, что с ростом q распределение давления приближается к распределению, симметричному относительно оси x=0.

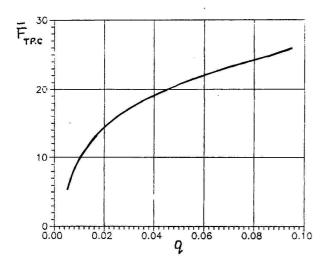


Рис. 4. Влияние q на $\overline{F_{TP.C}}$

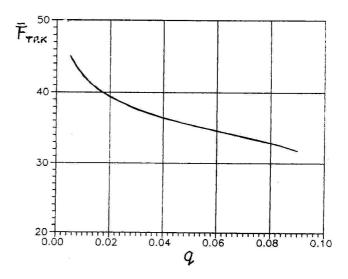


Рис. 5. Влияние q на $\overline{F_{TP.K}}$

Заключение

Итак, гидродинамическая задача магнитожидкостной смазки в точечном контакте рассмотрена для магнитной жидкости, находящейся в режиме магнитного насыщения. Установлены условия, при которых смазочный слой теряет устойчивость, что сопровождается потерей несущей способности на участках с отрицательным давлением. Усиление магнитного поля способствует росту протяженности и толщины смазочного слоя, а также контактного давления, выдерживаемого этим слоем.

СПИСОК ЛИТЕРАТУРЫ

- 1. Меделяев, И.А. Трение и износ деталей машин / И.А. Меделяев, А.Ю. Албагачиев. М.: Машиностроение, 2008. 460 с.
- 2. Данилов, В.Д. Гидродинамическая задача смазочного слоя магнитной жидкости в линейном и точечном контактах / В.Д. Данилов //Трение и смазка в машинах и механизмах. 2014. №12. 48 с.
- 1. Medelyaev, I.A. *Friction and Wear of Machinery* / I.A. Medelyaev, A.Yu. Albagachiev. M.: Mechanical Engineering, 2008. pp. 460.
- Danilov, V.D. Hydrodynamic problem of lubrication layer of magnetic liquid in line and point contacts / V.D. Danilov //Friction and Lubrication in Machines and Mechanisms. 2014. №12. pp. 48.

Статья поступила в редколлегию 30.06.2016. Рецензент: д.т.н., профессор Брянского государственного технического университета Киричек А.В.

Сведения об авторах:

Албагачиев Али Юсупович, д.т.н., профессор, зав. отделом ИМАШ РАН, e-mail: <u>Albagachiev@yandex.ru</u>.

Данилов Владимир Дмитриевич, к.т.н., СНС ИМАШ РАН, e-mail: danilovvd@mail.ru.

Albagachiev Ali Yusupovich, D.Eng., Prof., Dead of the Dep. IMASH RAS, e-mail: <u>Albagachiev@yandex.ru</u>.

Danilov Vladimir Dmitrievich, Can.Eng., SNS IMASH RAS, e-mail: danilovvd@mail.ru