УДК 621.757

DOI: 10.12737/20265

Е.А. Миронова

ОБЕСПЕЧЕНИЕ СТАБИЛЬНОСТИ ЗАТЯЖКИ РЕЗЬБОВЫХ СОЕДИНЕНИЙ МНОГОШПИНДЕЛЬНЫМИ ГАЙКОВЕРТАМИ С ПАССИВНОЙ АДАПТАЦИЕЙ ПО МОМЕНТУ

Обоснована точность моментов затяжки резьбовых соединений многошпиндельным гайковертом с пассивными средствами адаптации. **Ключевые слова:** многошпиндельный гайковерт, муфта предельного момента, дифференциальный механизм, погрешность момента затяжки, пассивная адаптация.

E.A. Mironova

STABILITY ENSURING IN THREADED CONNECTION TIGHTENING BY MULTISPINDLE NUTRUNNERS WITH PASSIVE ADAPTATION ON MOMENT

The necessity of the creation of a multispindle nutrunner ensuring a relatively stable moment of tightening in group threaded connections is substantiated.

A kinematic scheme of a multispindle nutrunner with passive means of adaptation on a moment on the basis of a differential mechanism use is offered.

Введение

В тех случаях, когда необходимо одновременное прижатие скрепляемых деталей групповыми резьбовыми соединениями и требуется высокая точность момента

Кинематическая схема гайковерта

Устройство (рисунок) состоит из электродвигателя, планетарного редуктора, муфты предельного момента, дифференциального механизма, зубчатых передач и шпинделей.

От электродвигателя 1 вращение передается через планетарный редуктор 2 на муфту предельного момента с полумуфтами 3, 4, а затем на ось дифференциального механизма, где движение разделяется на два. Дифференциальный механизм служит для выравнивания моментов завинчивания и затяжки, обеспечивая адаптацию (слежение) по моменту.

Первое вращение передается через ось 20 дифференциала, которая жестко

The analysis is given of a moment error at multispindle nutrunner tightening on the basis of passive adaptation.

Key words: multispindle nutrunner, coupler of limit moment, differential mechanism, tightening moment error, passive adaptation.

затяжки, можно предложить следующую кинематическую схему многошпиндельного завинчивающего устройства с пассивной адаптацией.

связана с осью 7 сателлита 8, на сдвоенную шестерню 5, 6, взаимодействующую с колесом 21, и далее через зубчатые передачи 12, 13 и 14, 15 на шпиндель 18 к патрону 19.

Второе вращение от оси 20 через ось 7 передается на сателлит 22 к сдвоенной шестерне 9, 10, взаимодействующей с колесом 11, а затем через зубчатые передачи 12, 13 и 14, 15 на шпиндель 16 к патрону 17.

Как только суммарный момент сопротивления вращению будет равен моменту срабатывания муфты предельного момента, гайковерт остановится.

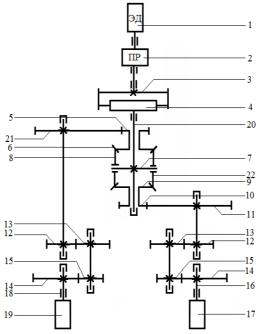


Рис. Двухшпиндельный гайковерт на основе муфты предельного момента и дифференциального механизма

Погрешности моментов затяжки

В процессе затяжки резьбовых соединений гайковертом с пассивной адаптацией возникает погрешность момента затяжки, которая зависит от следующих факторов: неточности срабатывания муфты предельного момента; чувствительности дифференциального механизма; непостоянства момента сопротивления в резьбах.

В работе [2] приведено математическое описание процесса завинчивания и затяжки групповых резьбовых соединений с адаптацией по моменту, уточненное уравнение которого имеет вид

$$\begin{split} J_{z}\ddot{\phi} &= M_{\kappa p} - \frac{F_{6}E_{6}p}{2\pi l_{6}} \left[\frac{\mu_{T}}{3} \frac{D^{3} - d_{0}^{3}}{D^{2} - d_{0}^{2}} + \right. \\ &\left. + \frac{d_{2}}{2} tg \left(\frac{p}{\pi d_{2}} + \rho \right) \right] \phi - \\ &\left. - \frac{F_{6}E_{6}p}{2\pi l_{6}} \left[\frac{\mu_{T}}{3} \frac{D^{3} - d_{0}^{3}}{D^{2} - d_{0}^{2}} + \frac{d_{2}}{2} tg \left(\frac{p}{\pi d_{2}} + \rho \right) \right] \phi_{0}, \end{split}$$

где J_z — приведенный к оси шпинделя момент инерции вращающихся элементов гайковерта; M_{sp} — крутящийся момент, который действует на резьбовое соединение; F_6 — площадь сечения тела болта; E_6 — модуль упругости материала болта; l_6 — длина рас-

тягиваемой части болта; p — шаг резьбы; $\mu_{\scriptscriptstyle \rm T}$ — коэффициент трения на торце головки болта; D — наружный диаметр опорной поверхности головки болта (равен размеру под ключ головки болта); $d_{\scriptscriptstyle 0}$ — диаметр тела болта; $d_{\scriptscriptstyle 2}$ — средний диаметр резьбы; ρ — угол трения в резьбе.

Для случая, когда коэффициенты вязкого трения и трения скольжения, а также коэффициент трения на торце головки болта и угол трения в резьбе изменяются на 20%, величина погрешности момента, зависящая от непостоянства сопротивления в резьбах, составляет около 25% от номинального значения.

Погрешность переключения дифференциального механизма за счет его чувствительности составляет 10-15% от номинального значения [3].

Момент переключения муфты предельного момента, согласно [1], выражается формулой

$$M_{\text{MIIM}} = \frac{Q_{\text{B}}(D_{0} + D_{1})}{4\left[f'\frac{D_{0} + D_{1}}{2d} + \text{tg}(\alpha + \phi')\right]},$$

где $Q_{_{\rm B}}$ — осевая сила срабатывания муфты предельного момента; $D_{_0}$ — наружный диаметр муфты; $D_{_{\rm I}}$ — внутренний диаметр

муфты; d — диаметр вала муфты; α — угол скоса зубьев; φ' — угол трения; f' — коэффициент трения.

Тогда погрешность момента переключения муфты предельного момента, согласно методу линейных ошибок, примет вид

$$\begin{split} &\delta \boldsymbol{M}_{\text{\tiny MIIM}} = \frac{\partial \boldsymbol{M}_{\text{\tiny MRM}}}{\partial \boldsymbol{Q}_{e}} \, \delta \boldsymbol{Q}_{e} + \frac{\partial \boldsymbol{M}_{\text{\tiny MRM}}}{\partial \boldsymbol{D}_{0}} \, \delta \boldsymbol{D}_{0} + \frac{\partial \boldsymbol{M}_{\text{\tiny MRM}}}{\partial \boldsymbol{D}_{1}} \, \delta \boldsymbol{D}_{1} + \\ &+ \frac{\partial \boldsymbol{M}_{\text{\tiny MRM}}}{\partial \boldsymbol{d}} \, \delta \boldsymbol{d} + \frac{\partial \boldsymbol{M}_{\text{\tiny MRM}}}{\partial \boldsymbol{f}'} \, \delta \boldsymbol{f}' + \frac{\partial \boldsymbol{M}_{\text{\tiny MRM}}}{\partial \boldsymbol{\alpha}} \, \delta \boldsymbol{\alpha} + \\ &+ \frac{\partial \boldsymbol{M}_{\text{\tiny MRM}}}{\partial \boldsymbol{\phi}'} \, \delta \boldsymbol{\phi}', \end{split}$$

Заключение

Стоит отметить, что одним из достоинств предложенной кинематической схемы многошпиндельного гайковерта является то, что за счет пассивной адаптации относительная погрешность моментов за-

СПИСОК ЛИТЕРАТУРЫ

- 1. Воркуев, Д.С. Разработка семейства высокоточных многошпиндельных гайковертов нового класса на основе одного привода: монография / Д.С. Воркуев, Ю.З. Житников; под общ. ред. Ю.З. Житникова. М.: Машиностроение, 2009. 204 с
- 2. Миронова, Е.А. Адаптивная затяжка групповых резьбовых соединений по моменту / Е.А. Миронова // Сборка в машиностроении, приборостроении. –2015. №5. С. 17-19.
- 3. Нарбут, А.Н. Автомобили: Рабочие процессы и расчет механизмов и систем: учеб. для студентов высш. учеб. заведений/ А.Н. Нарбут. 2-е изд., испр. М.: Академия, 2008. 256с.

где
$$\frac{\partial M_{_{\text{мілм}}}}{\partial Q_{_{\text{B}}}},\; \frac{\partial M_{_{\text{мілм}}}}{\partial D_{_{0}}},\; \ldots,\; \frac{\partial M_{_{\text{мілм}}}}{\partial arphi'} \; -\;$$
коэффициен-

ты влияния данных параметров на погрешность момента переключения муфты предельного момента; $\delta Q_{_{\rm B}}$, $\delta D_{_{\rm O}}$, ..., $\delta \phi'$ – отклонения данных параметров.

Исходя из допустимых значений отклонений этих параметров гайковерта [2] и с учетом приведения к оси шпинделя погрешность составит около 0,76% от номинального значения.

С учетом всего перечисленного общая погрешность момента δM будет равна 48,6 кг·м, а относительная погрешность составит 27 % от номинала.

тяжки резьбовых соединений между шпинделями не превышает 10-15%.

Повысить точность момента возможно путем установки муфт предельного момента после дифференциального механизма.

- Vorkuyev, D.S. Development of New Class Highaccuracy Multispindle Nutrunners Family Based on One Drive: Monograph / D.S. Vorkuyev, Yu.Z. Zhitnikov; under the general editorship of Yu.Z. Zhitnikov. – M.: Mechanical Engineering, 2009. – pp. 204.
- 2. Mironova, E.A. Adaptive tightening of group threaded joints on a moment / E.A. Mironova // Assemblage in Instrument-making. −2015. − №5. − pp. 17-19.
- 3. Narbut, A.N. Motor Cars: Working Processes and Computation of Mechanisms and Systems: Textbook for college students/ A.N. Narbut. 2-d Ed., revised. M.: Academy, 2008. pp. 256.

Статья поступила в редколлегию 10.03.2016. Рецензент: д.т.н., профессор Ковровской государственной технологической академии им. В.А. Дегтярева Житников Ю.З.

Сведения об авторах:

Миронова Елена Александровна, доцент кафедры «Высшая математика» Ковровской государственной технологической академии им. В.А. Дегтярева, тел.: 8-915-798-55-13, e-mail: elena mir a@mail.ru.

Mironova Helen Alexandrovna, Assistant Prof. of the Dep. "Higher Mathematics" Degtyaryov State technological cademy, Phone: 8-915-798-55-13.