Научная статья Статья в открытом доступе УДК 51-74: 537.632/.636: 62-762.89 doi: 10.30987/2782-5957-2023-3-14-20

КОНЕЧНО-ЭЛЕМЕНТНОЕ МОДЕЛИРОВАНИЕ МАГНИТНЫХ ПОЛЕЙ МАГНИТОЖИДКОСТНЫХ УПЛОТНЕНИЙ

Денис Юрьевич Палин

Ивановская пожарно-спасательная академия ГПС МЧС России, Иваново, Россия denis_palin@bk.ru

Аннотация

Представлен процесс построения модели магнитной системы магнитожидкостного уплотнения при помощи программного обеспечения femm 4.2. Приведены результаты расчета конечноэлементного моделирования магнитного поля. Выявлено, что конечно-элементное моделирование магнитного поля позволяет качественно оценить работоспособность магнитной системы магнитожидкостных уплотнений.

Ключевые слова: конечно-элементное моделирование, поле, уплотнение, индукция.

Ссылка для цитирования:

Палин Д. Ю. Конечно-элементное моделирование магнитных полей магнитожидкостных уплотнений / Д.Ю. Палин // Транспортное машиностроение. – 2023. - № 03. – С. 14 – 20. doi: 10.30987/2782-5957-2023-3-14-20.

Original article Open Access Article

FINITE ELEMENT MODELING OF MAGNETIC FIELDS OF FERROFLUIDIC SEALS

Denis Yurievich Palin

Ivanovo Fire and Rescue Academy of the Ministry of Emergency Situations of Russia, Ivanovo, Russia denis_palin@bk.ru

Abstract

The paper shows the process of constructing a model of a magnetic system of a ferrofluidic seal by means of femm 4.2. The results of a finite element simulation of a magnetic field are presented. It is found out that finite element modeling of the magnetic field

Reference for citing:

Palin DYu. Finite element modeling of magnetic fields of ferrofluidic seals. Transport Engineering. 2023; 3:4-20. doi: 10.30987/2782-5957-2023-3-14-20.

Введение

Разработка конструкций магнитожидкостных уплотнений (МЖУ) является актуальным направлением в области уплотнительной техники. В основном они служат для обеспечения защиты подшипниковых узлов оборудования различного назначения. В зависимости от условий эксплуатации технологического оборудования применяются конструкции МЖУ с ciency of the magnetic system of ferrofluidic seals. **Keywords**: finite element modeling, field, seal, induction

gives the opportunity to assess qualitatively the effi-

induction.

магнитными системами, состоящими из постоянных магнитов или магнитных эластомерных материалов. Для того чтобы теоретически оценить эффективность работы магнитной системы таких уплотнений, необходимо провести соответствующие расчеты магнитных полей [1].

Впервые термин "конечный элемент" ("finite element") был употреблен Р. Кла-

фом в 1960 году. Именно этот год среди многих механиков и математиков считается годом создания метода конечных элементов (МКЭ) [2].

Сегодня МКЭ во всем мире является неотъемлемой частью процесса проекти-

Основная часть

Конечно-элементное моделирование магнитных полей выполнялось при помощи программного обеспечения *FEMM* 4.2. рования деталей оборудования различного назначения. Данный метод хорошо справляется при расчете магнитных полей, так как он позволяет достоверно описать расчетную область, тем самым уменьшить погрешности в вычислениях [3, 4].

[5] на примере разработанного уплотнения, представленного на рис. 1 [6].

Рис. 1. Магнитожидкостное уплотнение вала 1 – корпус; 2 – магнитные эластомерные шайбы Fig. 1. Magnetofluidic shaft seal 1 – housing; 2 – magnetic elastomeric washers

После запуска компьютерной программы *femm* 4.2. создавался новый файл с помощью команды *File* > *new*. После чего Create a new problem в рабочем поле появлялось всплывающее окно, представленное на рис. 2.

reate a new problem		~
Magnetics Problem		-
	ОК	Cancel

Puc. 2. Создание новой магнитной задачи Fig. 2. Creating a new magnetic problem

В возникшем окне *Create* a *new* problem выбирался тип задачи *Magnetics* Problem, что означает решение магнитной

задачи. После выбора типа задачи программа активировала рабочее пространство, представленное на рис. 3.

		_																	_						-	
1	11	۰.	1		12	1 8	6	9	2	0	C::3	O	Ð	£	0		K	0								
	1			1		1			1			1		1	1	1			1		1	1	1	1		_

Рис. 3. Рабочее пространство femm 4.2 Fig. 3. femm 4.2 workspace femm 4.2

Далее в меню *Problem* запускалось окно настройки условий задачи (*Problem Definition*), представленное на рис. 4.

Problem Type	Axisymmetric 💌
Length Units	Millimeters
Frequency (Hz)	0
Depth	1
Solver Precision	1e-008
Min Angle	30
Smart Mesh	On 💌
AC Solver	Succ. Approx
Previous Solution	
Prev Type	None
Comment	
Add comments h	here.

Рис. 4. Окно настройки условий магнитной задачи Fig. 4. The window for setting the conditions of the magnetic problem

В рассматриваемом окне на (рис. 4) вводились следующие условия:

• *Problem Туре* (тип задачи) – Axisymmetric (Осесимметричная задача);

• Length Units (единицы измерения) – Millimeters (Миллиметры);

• Frequency, Hz (частота питания) –

• *Depth* (глубина) – 1 (постоянна для осесимметричных задач);

0;

Solver Precision (точность расчета)
– 1e-008;

• *Min Angle* (минимальный допустимый угол сетки) – 30;

• AC Solver, Previous Solution, Prev Туре – последние три параметра остаются по умолчанию, так как они схожи с 99 % случаев.

Следующий этап исследования заключался в построении модели МЖУ вала (рис. 1). Для этого в рабочем поле (рис. 3) вводились точки координат, которые указаны в табл. 1-3.

Таблица 1

Table 1

Координаты для построения магнитопроводного вала

Coordinales for the cor	istruction of a magnetic shaft
R	Z
0: 0: 50: 50	0: 7.5: 0: 7.5

Таблица 2

Координаты для построения магнитожидкостного уплотнения

Table 2

Coordinates for the construction of a ferrofluidic seal

R	Z
21; 21; 22; 22; 23; 23; 24; 24; 25; 25; 26; 26; 27; 27; 28; 28; 29; 29; 21; 20; 20; 30; 30; 29	7; 17; 1

Таблица 3

Координаты границы исследуемого пространства

Table 3

Coordinates of the studied space boundary

R	Z
0; 0; 50; 50	0; 24; 24; 0

После того, как контур модели уплотнения был построен, указывались материалы, которые в дальнейшем использовались при решении задачи. Для этого в рабочем пространстве (рис. 3) выбиралось меню *Properties* \rightarrow *Materials*, вызывающее окно *Block Property* (рис. 5).

Block Property)	K Block Property		
Name	Magnetic rubber			Name	Air	
B-H Curve	Linear B-H Relation	ship 💌		B-H Curve	Linear B-H Relatio	onship 💌
Linear Material	Properties			Linear Material	Properties	
Relative μ_r	1	Relative μ_z	1	Relative μ_{r}	1	Relative μ_{z} 1
$\pmb{\phi}_{hr}$, deg	0	$\phi_{\rm hz}$, deg	0	∲ _{hr} , deg	0	∮ _{hz} , deg 0
Nonlinear Mate	rial Properties			- Nonlinear Mater	ial Properties	
Edit	B-H Curve	ϕ_{hmax} , deg	0	Edit	B-H Curve	∲ _{hmax} , deg 0
Coercivity		Electrical Cond	uctivity	Coercivity		Electrical Conductivity
H , A/m	190000	σ , MS/m	4e-012	H , A/m	0	σ, MS/m 0
Source Current	Density			Source Current	Density	
J, MA/m^2	0			J, MA/m^2	0	
Special Attribut	tes: Lamination & Wire	Туре		Special Attribut	es: Lamination & Wi	re Туре
Not laminate	d or stranded		•	Not laminated	d or stranded	•
Lam thickness, n	nm 0	Lam fill factor	1	Lam thickness, m	im 0	Lam fill factor
Number of stran	lds 0	Strand dia, mm	0	Number of stran	ds 0	Strand dia, mm 0
		Ok	Cancel]		OK Cancel
	a)					ര്)
ock Property				× Block Property		-)
Name	Steel-45			Name	Plastic	
B-H Curve	Nonlinear B-H Curv	e 💌		B-H Curve	Linear B-H Relati	onship 💌
Linear Material F	Properties			Linear Material	Properties	
Relative 11	1	Relative µ _	1	Relative 4	1	Relative U _ 1
$\phi_{\rm hr}$, deg	0	\$\$ _hz, deg	0	∲ _{hr} , deg	0	\$\$ _hz, deg 0
Nonlinear Mater	ial Properties			Nonlinear Mate	rial Properties	
Edit	B-H Curve	∲ _{hmax} , deg	0	Edit	B-H Curve	∮ _{hmax} , deg 0
Coercivity		Electrical Cond	luctivity	Coercivity		Electrical Conductivity
H , A/m	0	σ, MS/m	5.51	H _c , A/m	0	σ, MS/m 0
Source Current	Density			Source Curren	t Density	
J, MA/m^2	0			J, MA/m^2	0	
Special Attribute	es: Lamination & Wire	Туре		Special Attribu	tes: Lamination & W	/ire Type
Not laminated	l or stranded		-	Not laminate	d or stranded	•
am thickness, m	m 0	Lam fill factor	1	Lam thickness, i	mm 0	Lam fill factor
umber of strand	ds 0	Strand dia, mm	0	Number of strar	nds 0	Strand dia, mm 0
		0	Cancel			OK Cancel
	B)					г)

Рис. 5. Свойство блока материалов

a – магнитная резина; б – воздух; в – сталь 45; г – пластик Fig. 5. Property of the block of materials a – magnetic rubber; b – air; c – steel 45; d – plastic Далее с помощью команды Run mesh generator построенная модель МЖУ раз-

Рис. 6. Триангуляция расчетной области уплотнения, намагниченного в радиальном направлении Fig. 6. Triangulation of the calculated area of the seal magnetized in the radial direction

При помощи команды *Run Analysis* запускался автоматический расчет модели с последующим выводом картины распре-

деления магнитного поля и магнитной индукции (рис. 7).

Рис. 7. Результаты исследования в рабочей зоне уплотнения, намагниченного в осевом направлении при расположении одноименными полюсами друг к другу а – распределение магнитного поля; б – распределение магнитной индукции
Fig. 7. Results of the study in the working area of a seal magnetized in the axial direction when the poles of the same name are placed to each other a – distribution of the magnetic field; b – distribution of magnetic induction

Результаты моделирования на (рис. 7 а, б) показывают, что силовые линии магнитного потока сосредотачиваются в рабочей области уплотнительного устройства (рис. 7 а), а максимальное значение магнитной индукции в рабочей области уплотнения составляет порядка 0,37 Тл

Заключение

1. Моделирование магнитных полей методом МКЭ позволяет решать комплекс задач, связанных с построением рациональной конфигурации магнитной системы магнитожидкостных уплотнений.

2. Применение МКЭ при теоретическом исследовании процесса распространения магнитных полей магнитожидкостных уплотнений позволяет избежать мате-

СПИСОК ИСТОЧНИКОВ

- Топоров, А. В. Расчет магнитной системы комбинированного магнитожидкостного уплотнения / А. В. Топоров, Д. Ю. Палин, В. В. Киселев // Современные проблемы гражданской защиты. – 2019. – № 2(31). – С. 83-89.
- Маковкин, Г. А., Лихачева С. Ю. Применение МКЭ к решению задач механики деформируемого твердого тела. Учебное пособие. Часть 1 Н.Новгород: Изд-во ННГАСУ, 2012 71 с.
- Шимановский, А. О. Применение метода конечных элементов в решении задач прикладной механики : Учебно-методическое пособие / А. О. Шимановский, А. В. Путято. Гомель : БелГУТ, 2008 61 с.
- Бате, К. Ю. Методы конечных элементов / К. Ю. Бате ; пер. с англ. В. П. Шидловского ; под ред.

REFERENCES

- 1. Toporov AV, Palin DYu, Kiselev VV. Calculation of the magnetic system of a combined ferrofluidic seal. Modern problems of civil protection. 2019;2(31):83-89.
- Makovkin GA, Likhacheva SYu. Application of FEM to solve problems of deformable solid mechanics; textbook. Novgorod: Publishing house of NNGASU; 2012.
- Shimanovsky AO, Putyato AV. Application of the finite element method in solving problems of applied mechanics: an educational and methodological manual. Gomel: BelGUT; 2008.

(рисунок 7 б). Из этого следует, что магнитная жидкость будет удерживаться пондеромоторными силами в рабочей зоне уплотнения, обеспечивать его работоспособность и выступать в качестве смазочного элемента.

риальных и временных затрат на изготовление модельных образцов для проведения экспериментов.

3. Результаты программного моделирования МКЭ позволяют охарактеризовать работоспособность уплотнительных устройств, состоящих из магнитной системы с постоянным магнитом или магнитным эластомерным материалом.

Л. И. Турчака. – Москва : Физматлит, 2010. – 1022 с.

- Вяльцев, Г. Б. Расчет магнитных полей методом конечных элементов в программе FEMM для решения задач электромеханики: учебное пособие / Г. Б. Вяльцев, Д. М. Топорков, Т. В. Честюнина. – Новосибирск: Изд-во НГТУ, 2018. – 115 с.
- Пат. 197088 Российская Федерация, МПК(7) F16 J 15/00, F16 J 15/43. Магнитожидкостное уплотнение вала / Палин Д. Ю., Топоров А. В., Пучков П. В.; патентообладатель ФГБОУ ВО Ивановская пожарно-спасательная академия ГПС МЧС России – № 2019137911; заявл. 22.11.2019; опубл. 30.03.2020, Бюл №10. с.5.
- 4. Bate KYu. Finite element methods. Moscow: Fizmatlit; 2010.
- Vyaltsev GB, Toporkov DM, Chestyunina TV. Calculation of magnetic fields by the finite element method in FEMM program for solving problems of electromechanics: textbook. Novosibirsk: NSTU Publishing House; 2018.
- Palin DYu, Toporov AV, Puchkov PV. Patent 197088 Russian Federation, IPC(7) F16 J 15/00, F16 J 15/43. Ferrofluid shaft seal. 2020 March 30.

Информация об авторе:

Палин Денис Юрьевич, научный сотрудник отделения информационного обеспечения населения и технологий информационной поддержки РСЧС и

Palin Denis Yurievich, Research worker of the Department of Informational Support of the Population and Technologies of Information Support of Emergen-

Статья опубликована в режиме Open Access. Article published in Open Access mode. пожарной безопасности научно-технического отдела, тел.: +7(960)5114463.

cy Situations and Fire Safety of the Scientific and Technical Department, phone: +7(960)5114463.

Статья поступила в редакцию 25.11.2022; одобрена после рецензирования 15.01.2023; принята к публикации 27.02.2023. Рецензент – Шец С.П., доктор технических наук, профессор Брянского государственного технического университета.

The article was submitted to the editorial office on 25.11.2022; approved after review on 15.01.2023; accepted for publication on 27.02.2023. The reviewer is Shets S.P, Doctor of Technical Sciences, Professor of Bryansk State Technical University.