УДК 621.382

DOI: 10.30987/conferencearticle 61c997f01d0487.24220511

ПРОГРАММИРУЕМЫЙ ВЫСОКОВОЛЬТНЫЙ ИСТОЧНИК НАПРЯЖЕНИЯ ДЛЯ КОНТРОЛЯ ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

Виталий Фёдорович Зотин

Брянский государственный технический университет, доцент, к.т.н. Российская Федерация, Брянск, v.f.zotin@gmail

Аннотация. Предложена схема устройства для автоматизированного контроля ряда параметров высоковольтных диодов и транзисторов. Компьютерным моделированием подтверждены заявленные характеристики устройства.

Ключевые слова: программируемый источник напряжения, контроль параметров, моделирование.

PROGRAMMABLE HIGH VOLTAGE SOURCE FOR PARAMETER MONITORING SEMICONDUCTOR DEVICES

Vitaly F. Zotin

Bryansk State Technical University, Associate Professor,

Candidate of Technical Sciences, Bryansk, Russian Federation, v.f.zotin@gmail

Abstract. The scheme of the device for automated control of a number of parameters of high-voltage diodes and transistors is proposed. Computer modeling has confirmed the claimed characteristics of the device.

Keywords: programmable voltage source, parameter control, modeling.

При производстве карбидокремниевых диодов Шоттки и полевых транзисторов возникает задача автоматизированного контроля таких параметров, как обратный ток диода и начальный ток стока транзистора. Для приборов относительно небольшой мощности величина контролируемых токов находится в диапазоне 0...1 мА при испытательном напряжении до 1500 В.

Автор предлагает использовать в составе автоматизированного измерительного комплекса программируемый высоковольтный источник напряжения, схема которого в среде Simscape приведена на рис. 1.

Источник Uin моделирует задающий сигнал, формируемый контроллером измерительного комплекса. Этот сигнал вместе с сигналом обратной связи (делитель R5, R6) воспринимается операционным усилителем DA1, выполняющим функции регулятора.

В качестве исполнительного устройства применён высоковольтный каскад на транзисторах VT1 и VT2. При этом транзистор VT1 является стабилизатором суммарного тока через транзистор VT2 и нагрузку RC_Load, имитирующую испытуемое изделие. Этот ток соответствует току короткого замыкания. Величина суммарного тока определяется «взвешенным» источником тока $J=5\mu A$ и сопротивлениями резисторов R1 и R2.

© Зотин В.Ф., 2021

САПР и моделирование в современной электронике. С. 239 – 242.

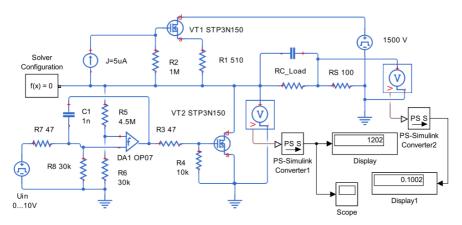


Рисунок 1 – Схема модели программируемого источника напряжения

Параметры модели операционного усилителя DA1 (рис. 2) выбраны в соответствии с типовыми значениями, указанными в документации производителя [1]. Это же касается и параметров транзисторов VT1 и VT2 [2].

Gain, A:	2e5		
Input resistance, Rin:	20e7	Ohm	,
Output resistance, Rout:	60	Ohm	,
Minimum output, Vmin:	- 12	V	•
Maximum output, Vmax:	12	V	,
Maximum slew rate, Vdot:	1e5	V/s	,
Bandwidth, f:	6e5	Hz	•
Initial output voltage, V0:	0	V	,

Рисунок 2 – Параметры модели операционного усилителя DA1

содержит контрольные средства: измеритель Схема на рис. 1 установившегося выходного напряжения (Display) и измеритель тока RS. Оценка динамических (Display1) на основе шунта программируемого источника производится с помощью Scope. Показания измерителей соответствуют заданию Uin = 8 В и сопротивлению нагрузки 1,2 МОм. Для этих исходных данных при ступенчатом нарастании напряжения Uin получена осциллограмма выходного напряжения, представленная на рис. 3. Она свидетельствует об отсутствии значительного перерегулирования.

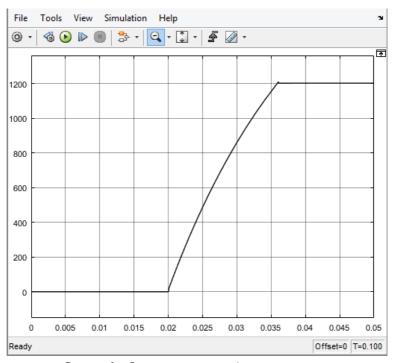


Рисунок 3 – Осциллограмма выходного напряжения

С помощью серии имитационных экспериментов на основе модели по схеме рис. 1 установлено:

- 1) ступенчатое задание сигнала Uin не приводит к значительному перерегулированию, что важно при испытании полупроводниковых приборов;
- 2) вариация барьерной ёмкости испытуемого изделия не влияет на устойчивость контура регулирования и характер изменения выходного напряжения;
- 3) при выходном напряжении в диапазоне (15...1500) В обеспечивается максимальный ток нагрузки не менее 1 мА;
- 4) установившийся ток короткого замыкания в нагрузке при любом заданном напряжении не превышает 1,6 мА.

При технической реализации предложенной схемы программируемого источника напряжения необходим эквивалент «взвешенного» источника тока J=5µA (рис. 1). Предлагается использовать для этой цели микросхему фотоэлектрического изолятора PVI1050NS [3]. Микросхема содержит две оптопары с приёмником излучения в виде цепочки фотодиодов. Каждая из оптопар при токе излучающего диода, равном 10 мА, обеспечивает ток в сопротивлении нагрузки 1 МОм не менее 2,5 мкА. Поэтому целесообразно излучающие диоды соединить последовательно, а фотоприёмники — параллельно.

Необходимо отметить, что изоляция между входами и выходами данной микросхемы способна выдерживать напряжение с действующим значением до 2500 В.

Электропитание излучающих диодов микросхемы PVI1050NS возможно от источника напряжения ± 12 В (на схеме рис. 1 отсутствует), предназначенного для питания операционного усилителя. Целесообразно предусмотреть возможность подстройки тока излучающих диодов.

Очевидно дополнительная доработка предложенной схемы требуется и для узла формирования измерительного сигнала при контроле токовых параметров испытуемых изделий. Несмотря на то, что стандарт допускает погрешность измерения начального тока стока и обратного тока диода до 10%, проблема заключается в весьма широком диапазоне возможных значений – от 10 нА до 1 мА.

Предлагается диапазон измерения токов разбить на 5 поддиапазонов с верхними пределами 0,2, 2, 20, 200 и 2000 мкА. В этом случае шунт (RS на схеме рис. 1) должен иметь 5 номиналов сопротивления и коммутатор, управляемый контроллером измерительного комплекса. Для формирования измерительного сигнала, передаваемого в контроллер, целесообразно применить прецизионный инструментальный усилитель, например, микросхему INA818 [4].

Применение предела 2000 мкА позволяет идентифицировать перегрузку по выходу источника напряжения, включая короткое замыкание, без трансляции сигнала обратной связи по напряжению и его обработки контроллером.

В заключение необходимо отметить, что эксперименты, проведённые с опытным образцом устройства, содержащем регулятор и высоковольтный каскад согласно схемы рис. 1, подтвердили его работоспособность в заданных диапазонах напряжений и токов с показателями, близкими к полученным путём моделирования.

Список литературы

- 1. Analog Devices. Ultralow Offset Voltage Operational Amplifier [Электронный ресурс]. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/OP07.pdf (дата обращения 08.10.2021).
- 2. STFW3N150, STH3N150-2 STP3N150, STW3N150 Datasheet [Электронный ресурс]. URL: https://www.st.com/resource/en/datasheet/stp3n150.pdf (дата обращения 08.10.2021).
- 3. Infineon [Электронный ресурс]. URL: https://www.infineon.com/dgdl/Infineon-PVI1050N-DS-v01_00-EN.pdf?fileId=5546d462602a9dc801607b6ff00c5cca (дата обращения 08.10.2021).
- 4. Texas Instruments. INA818 35-µV Offset, 8-nV/√Hz Noise, Low-Power, Precision Instrumentation Amplifier [Электронный ресурс]. URL: https://www.ti.com/lit/ds/symlink/ina818.pdf (дата обращения 08.10.2021).

Материал принят к публикации 20.10.21.