УДК 621.3

DOI: 10.30987/conferencearticle_61c997ee6abfe1.10540781

МОДЕРНИЗАЦИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ «IM VIEW» ДЛЯ ИССЛЕДОВАНИЯ ТЕПЛОВЕНТИЛЯЦИОННЫХ РЕЖИМОВ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

Артем Сергеевич Третьяков

Белорусско – Российский университет, ст. преподаватель Республика Беларусь, Могилев, loggie121@gmail.com

Аннотация. Приведены основные сведения о программном обеспечении «IM View», необходимом аппаратном обеспечении для его корректной работы. Обозначены основные направления дальнейшего развития программы.

Ключевые слова: программное обеспечение, асинхронный электродвигатель, тепловентиляционный режим, модуль.

UPGRADING OF IM VIEW SOFTWARE FOR RESEARCH OF THERMAL VENTILATION MODES OF INDUCTION MOTORS

Artem S. Tretiakov

Belarussian-Russian university, senior lecturer, Republic of Belarus, Mogilev, loggie121@gmail.com

Abstract. The basic information about "IM View" software, necessary hardware for its correct operation is given. The main directions of further development of the program are outlined.

Keywords: software, induction motor, thermal ventilation mode, module.

Одним из параметров, определяющим долгий и безотказный срок службы асинхронного электродвигателя, является тепловентиляционный режим. Для идентификации тепловентиляционных режимов работы асинхронных электродвигателей было разработано программное обеспечение «IM View» [1].

Данное программное обеспечение написано на кроссплатформенном фреймворке QT5, и может быть портировано под любую современную операционную систему. Программа содержит пять основных модулей:

- 1. Модуль исходных данных.
- 2. Модуль идентификации параметров схемы замещения исследуемого асинхронного электродвигателя.
 - 3. Модуль электромагнитных процессов.
 - 4. Модуль тепловентиляционных процессов.
 - 5. Модуль выходных данных.

Модуль исходных данных представляет собой базу данных на основе технологии SQLite v3, в которой хранятся исходные данные для последующих расчетов (паспортные данные двигателей, настроечные коэффициенты, и т.д.).

Модуль идентификации параметров схемы замещения исследуемого асинхронного электродвигателя предназначен непосредственно для

© Третьяков А.С., 2021

 $CA\Pi P$ и моделирование в современной электронике. С. 96 - 98.

определения реальных параметров Т-образной схемы замещения с их последующей передачей в следующие модули.

Модуль электромагнитных процессов представляет собой математический аппарат, переписанный из системы дифференциальных уравнений в систему разностных уравнений. Данный модуль предназначен для:

- 1. Снятие сигналов токов и напряжений каждой фазы.
- 2. Обработка полученных данных в зависимости от типа решаемой задачи.
- 3. Определение составляющих потерь энергетической диаграммы испытуемого асинхронного электродвигателя.
- 4. При отсутствии датчика скорости восстановление сигнала скорости с помощь ю наблюдателя состояния.
 - 5. Вычисление электромагнитного момента и т.д.

Модуль электромагнитных процессов предназначен для:

- 1. Экспериментальное определение температур на основе датчиков температуры.
- 2. Расчет температур отдельных узлов испытуемого асинхронного электродвигателя на основе данных предыдущих модулей.
 - 3. Определение параметров вентиляционной схемы замещения.
- 4. Возможность выбора тепловой схемы замещения при расчете температур и т.д.

Модуль выходных данных представляет собой итоговый файл. Объединяющий все стадии текущего эксперимента, в котором отображаются все измеренные параметры.

Для работы программы используется специализированное аппаратное обеспечение:

- 1. Блок ввода аналоговых сигналов (снятие сигналов тока, напряжения, и скорости в реальном времени).
- 2. Цифровые приборы для измерения температур и параметров воздушного потока, развиваемого вентилятором испытуемого асинхронного электродвигателя.

Конечная цель программного обеспечения «IM View» - идентификация теплового состояния асинхронного электродвигателя в произвольный момент времени.

В процессе работы над программой были выработаны пути над ее дальнейшим развитием. Каждый модуль получил свой набор улучшений.

Модуль исходных данных получил возможность сохранять полученных данные в виде единого файла-контейнера.

Модуль идентификации параметров схемы замещения исследуемого асинхронного электродвигателя получил более точную и доработанную методику идентификации параметров. Более того, на данный момент ведется разработка адаптивной модели расчета коррекционных коэффициентов на основе регрессионной модели.

Модуль электромагнитных процессов получил целый ряд улучшений:

- 1. Возможность гибкой настройки отображаемых графиков (отображение, толщина линий, и т.д.).
- 2. Возможность настройки обработки полученной информации, исходя из решаемой задачи.
- 3. Расчет составляющих потерь энергетической диаграммы асинхронного электродвигателя в режиме реального времени.
 - 4. Учет потерь в стали и эффекта вытеснения тока и т.д.

Более того, для работы с рядом цифровых приборов, имеющих интерфейс RS-485, был реализован протокол Modbus для их корректной работы.

Модуль тепловентиляционных процессов сейчас получает самый большой пакет обновлений:

- 1. Возможность выбора режима расчетов.
- 2. Возможность выбора тепловой схемы замещения для ее последующих расчетов.
- 3. Гибкая настройка параметров расчета тепловых и вентиляционных параметров.

В программе предполагается несколько режимов ее работы:

- 1. Демо-режим (демонстрация работы программы).
- 2. Режим работы с аппаратным обеспечением с учетом наличия или отсутствия датчика скорости.
- 3. Использование так называемой внутренней модели, имитирующей работу асинхронного электродвигателя.
 - 4. Возможность загружать данные из ранее полученных файлов.

Также планируется в дальнейшем реализация сеансов — работа программы, в течение которой полностью отрабатывается ее алгоритм для идентификации тепловых и вентиляционных параметров без возможности изменения исходных данных.

Последним пунктом программы, который на данный момент только прорабатывается, является алгоритм для идентификации остаточного теплового ресурса изоляции обмотки статора асинхронного двигателя

Список литературы

1. *Третьяков*, *А.С.* Разработка программного обеспечения IM VIEW для исследования тепловентиляционных режимов работы асинхронных электродвигателей / А. С. Третьяков // Информационные технологии и системы 2020 (ИТС 2020) = Information Tehnologies and Systems 2020 (ITS 2020): материалы междунар. науч. конф., (Республика Беларусь, Минск, 18 ноября 2020 года редкол.: Л. Ю. Шилин [и др.]. – Минск: БГУИР, 2020. – 220 с.

Материал принят к публикации 11.10.21.