Наукоёмкие технологии в заготовительном производстве

УДК 621.983.3, 539.376 DOI: 10.30987/2223-4608-2021-5-3-6

> А.В. Черняев, д.т.н. (ФГБОУ ВО «Тульский государственный университет», 300012, г. Тула, пр. Ленина, д. 92) Д.М. Тесаков, инженер-конструктор (АО «КБ Приборостроения им. академика А.Г. Шипунова», 300001, г. Тула, Щегловская засека, 59) E-mail: sovet01tsu@rambler.ru; apjelin@rambler.ru

Последующая вытяжка анизотропного вязкопластичного материала*

Получены соотношения для расчета напряжений при последующей вытяжке заготовки из анизотропного материала в условиях вязкопластичности. Использованы уравнения равновесия в напряжениях и линейное условие текучести. Учтено влияние изгиба заготовки на радиальных участках матрицы и прижима, а также трения. Выполнена оценка повреждаемости материала заготовки.

Ключевые слова: вытяжка; анизотропия; вязкопластичность; скорость; напряжения; сила; повреждаемость материала.

A.V. Chernyaev, Dr. Sc. Tech. (FSBEI HE "Tula State University", 92, Lenin Avenue, Tula, 300012) **D.M. Tesakov,** Design Engineer (JSC "Academician Shipunov Instrument Engineering Design Office",59, Shcheglovskaya Zaseka, Tula, 300001)

Subsequent drawing of anisotropic viscous-plastic material

The proportions for stress computation at the subsequent drawing of anisotropic billet under conditions of viscoplasticity are obtained. The equilibrium equations in stresses and a linear condition of fluidity are used. The impact of billet bending upon radial areas of a matrix and clamping and also friction is taken into account. The assessment of billet material damageability is carried out.

Keywords: drawing; anisotropy; viscoplasticity; speed; stresses; force; material damageability.

Процессы вытяжки осесимметричных изделий находят широкое применение в различных отраслях машиностроения. В качестве заготовок могут использоваться плоский (первая вытяжка) или полый полуфабрикат (последующая вытяжка). Для расчета силовых режимов процессов и допустимых степеней деформаций необходимы данные о напряжениях, возникающих в пластической области деформируемой заготовки. При вытяжке малопластичных материалов, например, специальных сплавов титана и алюминия, применяемых при изготовлении летательных аппаратов, процесс может реализовываться при общем или локальном нагреве на гидропрессовом оборудовании [1]. В этом случае металл проявляет вязкие свойства, что способствует повышению деформируемости. Применяемые материалы обладают анизотропией механических свойств, которая проявляется не только при пластической деформации, но и при повышенных температурах обработки [2]. Указанные обстоятельства необходимо учитывать при определении силовых режимов вытяжки.

Рассмотрим последующую вытяжку анизотропного вязкопластичного материала. Схема

^{*} Работа выполнена в рамках гранта по государственной поддержке ведущих научных школ Российской Федерации НШ-2601.2020.8.

операции приведена на рис. 1. Зона деформации исходной заготовки (фланцевая часть между матрицей и прижимом) нагрета и находится в состоянии вязкопластичности [1, 3].

Рис. 1. Схема последующей вытяжки

$$\sigma_e = A \varepsilon_e^m \xi_e^n, \tag{1}$$

где σ_e , ε_e , ξ_e – эквивалентные напряжение, деформация и скорость деформаций; A, m, n – константы материала, зависящие от температуры.

С использованием уравнения равновесия и закона течения Сен-Венана

$$\frac{d}{dr}(r\delta\sigma_r) - \delta\sigma_{\varphi} = 0 \\ \sigma_r - \sigma_{\varphi} = \gamma\sigma_e$$
(2)

эквивалентное напряжение может быть представлено в виде:

$$\sigma_e = Ak^{m+n} v_0^n r_1^{nf} r^{-(1+f)n} \left(\ln \frac{r}{r_1} \right)^m, \quad (3)$$

где σ_r , σ_{ϕ} – радиальное и окружное напряжения; δ – толщина фланца в точке с заданной радиальной координатой;

$$\delta = \delta_0 \left(\frac{r_0}{r}\right)^{1-f}; \ \gamma = \frac{2}{\sqrt{2}} \left(\frac{1+R}{\mu_\sigma^2 + 1 + 2R}\right)^{1/2};$$
$$f = \frac{R}{1+R}; \ k = \frac{2}{\sqrt{3}} \left(1 - f + f^2\right)^{1/2},$$

где δ_0 – толщина стенки заготовки; r_0 , r_1 , r – радиусы заготовки, пуансона и радиальная координата точки во фланце; R – коэффициент анизотропии материала при данной температуре; $\mu_{\sigma} = 0.53...0,55$ – коэффициент вида

напряженного состояния [4].

При последующей вытяжке изменение толщины стенки изделия незначительно. При условии $\delta = \text{const}, \ d\delta = 0$ система (2) приводится к уравнению:

$$r\frac{d\sigma_r}{dr} = -\gamma\sigma_e$$

Подстановка выражения (3) в это уравнение позволяет определить радиальное напряжение во фланце:

$$\left(\sigma_{r}\right)_{\phi\pi} = \gamma \int_{r}^{r_{0}} \frac{\sigma_{e}}{r} dr.$$
(4)

В связи с трением и изгибом заготовки на вытяжном инструменте возникают добавочные растягивающие радиальные напряжения. Их величины приближенно определяются выражениями [5]:

 напряжение, вызванное трением на плоскостях прижима и матрицы:

$$\left(\sigma_{r}\right)_{\text{TP.}} = \frac{\mu \cdot Q_{\text{TP.}}}{\pi \cdot r_{0} \cdot \delta_{0}}; \qquad (5)$$

 напряжение, вызванное изгибом и спрямлением заготовки на угловой поверхности матрицы:

$$\left[\sigma_{r}\right]_{M} = \frac{\delta}{2\left[2r_{M} + \delta\right]} \left(\sigma_{e}\right)_{M}; \qquad (6)$$

 напряжение при изгибе и спрямлении на угловой поверхности прижима:

$$\left(\sigma_{r}\right)_{\rm np.} = \frac{\delta}{2\left[2r_{\rm np.} + \delta\right]} \left(\sigma_{e}\right)_{\rm np.}; \tag{7}$$

где $r_{\rm M}$ – угловой радиус матрицы; $r_{\rm np.}$ – угловой радиус прижима; $Q_{\rm np.}$ – сила прижима; μ – ко-эффициент трения.

Соотношения для эквивалентных напряжений при изгибе заготовки в выражениях (6), (7) при схеме плоской деформации запишем в виде:

$$\left(\sigma_{e}\right)_{M} = A \left(\lambda / \left(1 + \frac{2r_{M}}{\delta}\right)\right)^{m+n} \left(\frac{\mathbf{v}_{0}}{\alpha \cdot r_{M}}\right)^{n}; \qquad (8)$$

$$(\sigma_e)_{\rm np.} = A \left(\lambda / 1 + \frac{2r_{\rm np.}}{\delta} \right)^{m+n} \left[\frac{\mathbf{v}_0}{\alpha \cdot r_{\rm np.}} \left(\frac{r_1}{r_0} \right)^f \right]^m, (9)$$

rge $\lambda = \frac{\sqrt{2}}{3} \left[(1+R)(2+R) \right]^{1/2}.$

Радиальное напряжение во фланце определяется суммой выражений (4) – (7) при учете (8), (9):

$$\sigma_r = (\sigma_r)_{\phi_{\pi}} + (\sigma_r)_{\tau_{p.}} + (\sigma_r)_{M} + (\sigma_r)_{np.}.$$
(10)

Сила вытяжки определяется по напряже-

нию (10) с учетом трения на угловых поверхностях прижима и матрицы, т.е.

$$F = \pi \delta^2 \left(1 + \frac{2r_1}{\delta} \right) (1 + 2\mu\alpha) \sigma_{r=r_1}$$

где *α* – угол охвата заготовкой угловой поверхности прижима и матрицы.

На основе приведенных соотношений выполнены расчеты силовых режимов второй вытяжки цилиндрических изделий из материалов, характеристики уравнения состояния и анизотропии которых приведены в табл. 1 [1, 6]. В расчетах приняты следующие геометрические параметры инструмента и заготовки: $\delta_0 = 2$ мм; $r_0 = 75$ мм; $r_{np.} = 6$ мм.

1. Константы материалов

Мате- риал	T,⁰C	σ _{е0} , МПа	<i>А</i> , МПа∙с ⁻ⁿ	т	п	R
АМг6	470	3,58	76,84	0,046	0,537	0,85
BT6C	930	38,0	66,80	0,030	0,060	1,06
OT4-1	900	7,24	61,26	0,099	0,286	0,66
BT20-1	950	4,53	58,53	0,028	0,477	0,55

На рис. 2 приведены зависимости относительной силы вытяжки $\overline{F} = F/(2\pi r_1 \delta_0 \sigma_{e0})$ от скорости перемещения пуансона v₀, радиуса матрицы $r_{\rm M}$, коэффициента вытяжки $m_d = r_1/r_0$ и коэффициента трения µ.

Анализ графических зависимостей и результатов расчета показывает, что при указанных температурах обработки исследуемые материалы проявляют вязкие свойства, и сила снижается с уменьшением скорости операции. На силу вытяжки в режиме вязкопластичности существенное влияние оказывают степень формоизменения и коэффициент трения, зависящий от выбора смазки. С увеличением радиуса закругления матрицы сила вытяжки снижается, но его влияние менее значительно по сравнению с другими технологическими параметрами.

Проведена оценка повреждаемости материала заготовки для сплавов АМг6 и ВТ6С, поведение которых подчиняется энергетической и кинетической теориям разрушения соответственно [7]:

$$\omega = \frac{1}{A_{\text{np.}}} \int \sigma_e \xi_e dt; \quad \omega = \frac{1}{\varepsilon_{e\text{np.}}} \int \xi_e dt,$$

где $A_{\text{пр.}}$, $\varepsilon_{e\text{пр.}}$ – предельная удельная работа разрушения и предельная эквивалентная деформация, зависящие от жесткости схемы напряжений [1].

Показано, что на повреждаемость сплава АМг6 оказывает влияние как скорость опера-

ции, так и степень деформации при вытяжке (рис. 3). Повреждаемость сплава ВТ6С не зависит от скорости и определяется только степенью деформации.

Рис. 2. Силовые режимы вытяжки: $a - \overline{F}(v_0); r_M = 6 \text{ мм}; m_d = 0,6; \mu = 0,2;$ $\overline{O} - \overline{F}(r_M); v_0 = 1 \text{ мм/мин}; m_d = 0,6; \mu = 0,2;$ $e - \overline{F}(m_d); v_0 = 1 \text{ мм/мин}; r_M = 6 \text{ мм}; \mu = 0,2;$ $c - \overline{F}(\mu); v_0 = 1 \text{ мм/мин}; r_M = 6 \text{ мм}; m_d = 0,6$

Рис. 3. Повреждаемость материала: $a - \omega(v_0); r_M = 6 \text{ мм}; m_d = 0,8; \mu = 0,2; \delta - \omega(m_d);$ $v_0 = 1 \text{ мм/мин}; r_M = 6 \text{ мм}; \mu = 0,2$

Выводы

1. При вытяжке с нагревом в определенных температурно-скоростных условиях упрочнение материала заготовки сопровождается релаксацией напряжений, что проявляется в снижении силы операции. Этот факт наиболее существенен при малых скоростях.

2. На силу вытяжки влияют также анизотропия механических свойств исходного материала; геометрия штампового инструмента; степень формоизменения и условия трения на контактных поверхностях инструмента и заготовки.

3. Для ряда материалов существенное влияние на повреждаемость оказывает скорость операции. Ее уменьшение снижает повреждаемость и, следовательно, позволяет увеличить степень вытяжки. Для других материалов повреждаемость определяется только степенью вытяжки.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. **Изотермическое** формоизменение анизотропных материалов жестким инструментом в режиме кратковременной ползучести / С.С. Яковлев [и др.]: монография / под ред. С.С. Яковлева. – М.: Машиностроение, 2009. – 412 с.

2. Демин, В.А., Черняев, А.В., Платонов, В.И., Коротков, В.А. Методика экспериментального определения механических и пластических свойств материала при растяжении с повышенной температурой // Цветные металлы. – 2019. – №5. – С. 66-73.

3. **Малинин, Н.Н.** Прикладная теория пластичности и ползучести, 3-е изд., испр. и доп. – Москва: Изд-во Юрайт, 2020. – 402 с.

4. **Яковлев, С.П., Яковлев, С.С., Андрейченко, В.А.** Обработка давлением анизотропных материалов. – Кишинев: Квант, 1997. – 331 с.

5. Попов, Е.А. Основы теории листовой штамповки : учеб. пособ. для вузов, 2-е изд., перераб. и доп. – М.: Машиностроение, 1977. – 278 с.

6. Трегубов, В.И., Платонов, В.И., Нуждин, Г.А., Коротков, В.А. Определение технологических режимов изотермического деформирования высокопрочных металлов: монография / под ред. С.Н. Ларина. – Тула: Изд-во ТулГУ, 2018. – 136 с.

7. **Черняев, А.В., Чудин, В.Н., Тесаков, Д.М.** Оценка повреждаемости анизотропного материала при вытяжке с нагревом // Кузнечно-штамповочное производство. Обработка материалов давлением. – 2020. – №12. – С. 3-7.

REFERENCES

1. Isothermal Forming of Anisotropic Materials with Hard Tool in Mode of Short-term Creep / S.S. Yakovlev [et al.]: monograph / under the editorship of S.S. Yakovlev. – M.: Mechanical Engineering, 2009. – pp. 412.

2. Dyomin, V.A., Chernyaev, A.V., Platonov, V.I., Korotkov, V.A. Procedure for experimental definition of mechanical and plastic properties of material at high-temperature drawing // *Non-ferrous Metals.* – 2019. – No.5. – pp. 66-73.

3. Malinin, N.N. *Applied Theory of Plasticity and Creeping*, 3-d Edition, Revised and Supplemented. – Moscow: Youright, 2020. – pp. 402.

4. Yakovlev, S.P., Yakovlev, S.S., Andreychenko, V.A. *Anisotropic Material Shaping.* – Kishinyov: Quant, 1997. – pp. 331.

5. Popov, E.A. *Fundamentals of Sheet Metal Stamping Theory*: college manual, 2-d edition revised and supplemented. – M.: Mechanical Engineering, 1977. – pp. 278.

6. Tregubov, V.I., Platonov, V.I., Nuzhdin, G.A., Korotkov, V.A. *Technological Mode Definition of High-strength Metal Isothermal Deformation*: monograph / under the editorship of S.N. Larin. – Tula: Tula SU Publishers, 2018. – pp. 136.

7. Chernyaev, A.V., Chudin, V.N., Tesakov, D.M. Assessment of anisotropic material damageability at heat drawing *// Blacksmithing and Stamping Production. Material Pressure Shaping.* – 2020. – No.12. – pp. 3-7.

Рецензент д.т.н. Сергей Николаевич Ларин