Транспорт

УДК 629.4+681.518:658.512.01

DOI: 10.12737/article_59cd7506ab0e61.90627489

В.И. Воробьев, О.В. Измеров, М.А. Маслов

ВЫБОР ОБЪЕКТНОЙ МОДЕЛИ ТЯГОВОГО ПРИВОДА ЛОКОМОТИВА

Рассмотрена задача выбора объектной модели технических решений механической части тягового привода локомотива. Предложена модель в виде иерархии множеств описаний при разной степени его схематизации и библиотеки описаний типовых объектов в виде иерархической структуры

функционального взаимодействия между элементами.

Ключевые слова: математическое моделирование, тяговый привод локомотива, автоматизация проектирования, объектная модель.

V.I. Vorobiev, O.V.Izmerov, M.A. Maslov

OBJECT MODEL OF LOCOMOTIVE TRACTION DRIVE

The problem of choice of object model technical solutions to the mechanical part of the traction drive of the locomotive. The proposed model in a hierarchy of sets of descriptions with varying degree of schematization and the library description of the model ob-

jects in a hierarchical structure of functional interaction between the elements.

Keywords: mathematical modeling, traction drive of the locomotive, design automation, the object model.

Внедрение САПР в процесс проектирования локомотивов пока не привело к соответствующему повышению качества проектных решений тягового привода. На электровозах ЭП1 и ЭП10 имели место случаи выхода из строя резинокордных муфт и узлов подвески редуктора [1] и узлов крепления тягового электродвигателя (ТЭД) к раме тележки [2]. На электровозе 2ЭС6 наблюдались излом поводка подвески ТЭД и выдавливание резины из шарниров подвески [3]. Интеграция ТЭД и осевого редуктора, примененная в приводе электровоза 2ЭС10, позволив повысить надежность, привела к общей нетехнологичности привода, повышению требований к точности из-за сложных размерных цепей и к росту трудоемкости ремонта. Эти результаты свидетельствуют о том, что слабым местом проектирования тяговых приводов на данный момент является моделирование их технических решений. Предлагаемая статья является попыткой решения указанной проблемы.

Анализ существующей методологии проектирования показал, что в настоящее

время имеется ряд методов конструирования [11; 12], основанных на моделях процесса проектирования, которые, согласно классификации [4], можно отнести к алгоритмическим моделям. Применению этих моделей в САПР препятствуют два обстоятельства. Во-первых, известные методики носят эмпирический характер, вследствие чего к настоящему времени предложено множество возможных алгоритмов поиска технического решения без однозначных критериев выбора наилучшего алгоритма. Во-вторых, данные алгоритмы рассчитаны на использование их человеком, вследствие чего не был рассмотрен вопрос о выборе типа модели технического решения для создания процедур связи с известными системами САПР.

В качестве общей методологической основы для моделирования технических решений тягового привода примем концепцию, изложенную С.В. Никитиным [5]. Согласно этой концепции, систему тягового привода можно представить пятеркой:

$$C = (\varphi, R, A^{(s)}, A^{(Rs)}, A^{(sR)}),$$
 (1)

где множество $\phi = \{S_1...S_p\}$ – состав системы $(S_1...S_p$ – внутренние элементы C); множество $R = \{R_1...R_q\}$ – окружающая среда (надсистема) $(R_1...R_q)$ – внешние элементы C), множество $A^{(s)}$ – все n-арные соотношения на элементах (внутренняя структура системы C), а множества A(sR) и A(Rs) – все n-арные соотношения между элементами множеств ϕ и R (структура связи взаимодействия систем со средой).

Отсюда модель тягового привода это система из множеств описаний реальных объектов множества. При этом отображение $\alpha: \varphi' \to \varphi$ считается гомоморфным отображением множества реальных объектов $\varphi' = \{S'_1...S'_n\}$ на множество их описаний $\phi = \{S_1...S_p\}$, если ϕ имеет тот же состав, что и множество ф'. Соответственно отображение системы $C' = C(\varphi', R', A^{(s')}, A^{(R's')}, A^{(s'R')})$ на систему $C = C(\varphi, R, A^{(S)}, A^{(RS)}, A^{(SR)})$ считается заданным, если задана пятерка отображе- $\alpha_1: \varphi' \to \varphi;$ $\alpha_2: R' \to R$; ний: $\alpha_3: A^{(S')} \to A^{(S)}; \qquad \qquad \alpha_4: A^{(R'S')} \to A^{(RS)};$ $\alpha_5: A^{(S'R')} \to A^{(SR)}$.

Описанный в [5] подход позволяет создать корректные математические модели конструкции, которые представляют собой набор связанных друг с другом элементов, входящих в библиотеки известных продуктов различных фирм (АСКОН, Autodesk, SolidWorks и др.).

Например, торсионный вал тягового привода электровоза (рис. 1) может быть представлен как система из подконструкций «Стержень», «Посадка с натягом» и «Переходная галтель», которые связаны с подконструкциями «Фланец упругой муфты» и «Фланец зубчатой муфты» и друг с другом.

Библиотечный элемент в виде массива данных может включать в себя элементы разного назначения (графический объект для системы создания конструкторской документации, элемент для моделирования физических процессов и т.п.). Для обеспечения совместимости разных систем при обращении к нему он может быть сконвертирован в файл требуемого формата. При

необходимости пользователями или администраторами системы могут быть созданы новые элементы.

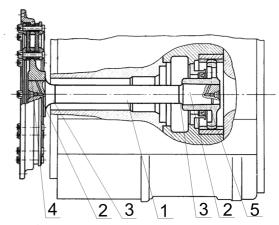


Рис. 1. Разбиение на подконструкции торсионного вала тягового привода электровоза: 1 – «Стержень»; 2 – «Посадка с натягом»; 3 – «Переходная галтель»; 4 – «Фланец упругой муфты»; 5 – «Фланец зубчатой муфты»

Метод моделирования, изложенный в [5], не имеет ограничений для формализации тягового привода как системы и позволяет автоматизировать процедуру отнесения детали или узла привода к тому или иному классу путем сравнения признаков. Основным недостатком этого метода является процедура создания новых решений, основанная на стихийно-эволюционном подходе: сначала выбирается прототип конструкции, а затем путем эмпирического анализа его эволюции создается усовершенствованная конструкция. Однако основной задачей при проектировании тяговых приводов в настоящее время является не столько усовершенствование ранее известных конструкций, сколько создание новых под существенно изменившиеся требования (непосредственный тяговый привод, привод для низкопольных экипажей и т.п.).

Для устранения данного недостатка воспользуемся положением о том, что основой построения объектной модели технической системы является классификация технических систем: «Наличие классификации технических систем позволяет идентифицировать вид структуры сложной технической системы, что позволяет провести декомпозицию системы в соответствии с типовой структурой» [6]. В настоя-

щее время авторами предложена классификация тяговых приводов локомотивов и другого рельсового подвижного состава, ориентированная на поиск новых решений [7], а в [8] предложен метод создания таких классификаций, основанный на общей алгоритмической модели процесса проектирования [9]. Отсюда следует, что объектная модель, то есть модель, которая описывает структуру объектов, составляющих систему, их атрибуты, операции, взаимосвязи с другими объектами и отражает прагматику разрабатываемой системы [10], должна отражать алгоритмическую модель процесса проектирования как базовую основу классификации (моделировать динамику создания тягового привода от наиболее общих схем до конкретного изделия). В то же время объектная модель должна соответствовать общей задаче позволять максимально приблизить методологию проектирования привода к метопроектирования радиоэлектронной аппаратуры, где достигнута высокая степень автоматизации за счет применения стандартных элементов и комплектующих изделий.

Указанная цель достигается тем, что обобщенная объектная модель тягового привода локомотива состоит из двух частей: иерархии множеств описаний тягового привода при разной степени его схематизации, от набора базовых функций до описаний функциональных элементов - деталей и подконструкций, и библиотеки, содержащей описания типовых объектов составных частей тягового привода, разделенных на функциональные элементы и описанных в виде иерархической структуры функционального взаимодействия между элементами (И-графа). При этом на уровне определения функциональных элементов привода производится поиск сходных объектов в библиотеке с помощью матриц мер сходства, а дальше процесс проектирования ведется путем видоизменения распознанных типовых узлов и деталей (рис. 2).

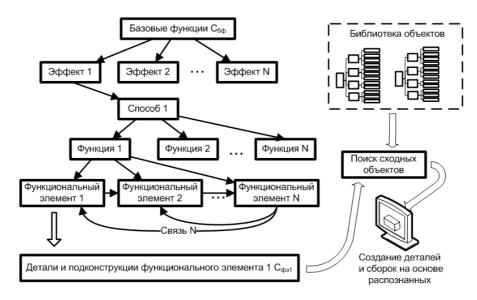


Рис. 2. Схема обобщенной объектной модели конструкции тягового привода

Для упрощения используем меру сходства в виде неотрицательной вещественной функции

$$C(R_i R_j) = \frac{2m(R_i \cap R_j)}{m(R_i) + m(R_j)}, \qquad (2)$$

где $m(R_i \cap R_j)$ - число общих видов в описаниях R_i и R_j ; $m(R_i)$ и $m(R_j)$ - число видов в описаниях R_i и R_i .

Рассмотрим пример поиска прототипа в библиотеке объектов. Пусть R_1 – описание проектируемого торсионного вала, R_2 - R_7 – описания прототипов, S_1 - S_{12} – признаки объектов (табл. 1). На основании табл. 1 составляем видовые списки (табл.

2). Пусть множества $m(R_i)$, $m(R_j)$ - количество признаков і-го и ј-го вариантов в видовых списках, множество $m(R_i \cap R_j)$ - количество признаков, одновременно имеющихся у і-го и ј-го вариантов. Тогда мера включения множества признаков і-го варианта в ј-й -

$$W(R_j; R_i) = \frac{m(R_i \cap R_j)}{m(R_i)}, \tag{3}$$

а мера включения множества призна-

ков ј-го варианта в і-й -

$$W(R_i; R_j) = \frac{m(R_i \cap R_j)}{m(R_j)}, \tag{4}$$

На основании (3) и (4) вычисляем значения элементов матрицы мер включения (табл. 3) в процентах, округляя полученные значения до целых чисел.

Таблица 1

Библиотека объектов

При-	R_1	R_2	R_3	R_4	R_5	R_6	\mathbf{R}_7
знак	Проект	2TЭ121	ЭП1	ДС3	ЧС1	ЧС2К	ЧС7(Е8)
S_1	Стержень	Стержень	Стержень	Стержень	Стержень	Стержень	Стержень
S_2	-	-	-	-	Конус	-	-
S_3	Конич.	Конич.	Конич.	-	-	-	-
	посадка	посадка	посадка				
S_4	-	Цилинд.	Цилинд.	-	-	-	-
		посадка	посадка				
S_5	-	-	-	-	Торцевые	-	-
					шлицы		
S_6	Радиальн.	-	-	Радиальн.	-	Радиальн.	Радиальн.
	шлицы			шлицы		шлицы	шлицы
S_7	-	-	-	-	-	Поводок	Поводок
S_8	Галтель	Галтель	Галтель	Галтель	-	Галтель	Галтель
S_9	-	-	-	-	Резьба	-	-
					внутр.		
S_{10}	Резьба	-	-	Резьба	-	Резьба	Резьба
	наружная			наружная		наружная	наружная
S_{11}	-	Канал	Канал	-	-	-	-
S_{12}	Бурт	-	-	Бурт	-	Бурт	Бурт

Элемент матрицы мер пересечения (табл. 4) в і-й строке и ј-м столбце есть $m(R_i \cap R_j)$, отсюда $m(R_i \cap R_i) = m(R_i)$. Элементы матрицы мер сходства (табл. 5) вычислены по формуле (2).

Например, для вариантов R_1 и R_2 число видов в описаниях признаков $m(R_1)$ =6, $m(R_2)$ =5, $m(R_1 \bigcap R_2)$ =3. Тогда

$$W(R_2; R_1) = \frac{m(R_1 \cap R_2)}{m(R_1)} = \frac{3}{6} = 50\%$$

(вторая строка - первый столбец табл. 3);

$$W(R_1; R_2) = \frac{m(R_1 \cap R_2)}{m(R_2)} = \frac{3}{5} = 60\%$$

(первая строка - второй столбец табл. 3). Соответственно в табл. 4 первая строка $m(R_1)$ =6, вторая строка - первый столбец

 $m(R_1 \cap R_2) = 3$, вторая строка второй столбец $m(R_2) = 5$, а в табл. 5

$$C(R_1R_2) = \frac{2m(R_1 \cap R_2)}{m(R_1) + m(R_2)} = \frac{2 \cdot 3}{6 + 5} = \frac{6}{11} = 55\%$$

(первая строка - первый столбец табл. 5). Как видно из матрицы мер сходства (табл. 5), наибольшее значение в столбце прототипа R_1 (91) оказывается для строки прототипа R_4 . Следовательно, близким к проектируемому объекту оказывается торсионный вал электровоза ДС3, который используется в качестве прототипа и изменяется в соответствии с заданными требованиями.

Далее в конструкции торсионного вала выделяется подконструкция, которая отличает ее от прототипа детали (коническая посадка), и для нее производится поиск прототипа исходя из признаков, опи-

 R_3

 R_1

 S_1

 S_2

 S_3

 S_4

 S_5

 S_6

 S_7

 S_8

 S_9

 S_{10}

 S_{11}

 S_{12}

 R_1

 R_2

 R_3

 R_4

 R_5

 R_6

 R_7

 R_2

Видовые списки

 R_4

 R_5

сывающих конструктивные особенности и предполагаемую технологию изготовления.

Таблица 2

 R_6 R_7

Таблица 3

Матрица мер включения							
	R_1	R_2	R_3	R_4	R_5	R_6	R_7
R_1		60	60	100	20	100	100
R_2	50		100	40	25	33	33
R_3	50	100		40	25	33	33
R ₄	83	40	40		25	83	83
R ₅	17	20	20	20		17	17
R ₆	83	40	40	100	25		100
R ₇	83	40	40	100	25	100	

Таблица 4

Матрица мер пересечения \overline{R}_7 R_1 R_2 R_3 R_4 R_5 R_6

Таблица 5

Матрица мер сходства							
R_2	55						
R_3	55	100					
R_4	91	40	40				
R_5	20	22	22	22			
R_6	83	37	36	91	20		
R_7	83	37	36	91	20	100	
	R_1	R_2	R_3	R_5	R_6	R_7	

Упрощенно говоря, предложенная объектная модель позволяет реализовать процесс автоматических подсказок типовых решений конструктору во время проектирования. Это отражает принцип конструирования, когда новая конструкция реализуется на базе максимально изученных и освоенных производством элементов и решает проблему поиска элементов в каталогах, характерную, например, для [12]. Экономический эффект от использования предложенной объектной модели заключается в снижении издержек от ошибок проектирования, выявляемых после изготовления опытных образцов.

Выволы:

1. Основным недостатком известных методов моделирования новых техниче-

ских решений механической части тягового привода локомотива является использование стихийно-эволюционного подхода.

- 2. Предложена объектная модель конструкции тягового привода в виде иерархии множеств описаний при разной степени его схематизации и библиотеки описаний типовых объектов в виде иерархической структуры функционального взаимодействия между элементами (Играфа), позволяющая реализовать автоматические подсказки как типовые конструкции из библиотеки описаний, найденные с помощью матриц мер сходства.
- 3. Предложенная модель конструкции позволяет сократить число ошибок проектирования за счет того, что новая конструкция реализуется с максимальным ис-

пользованием ранее изученных и техноло-

гически отработанных аналогов.

СПИСОК ЛИТЕРАТУРЫ

- Соколов, Ю.Н. Повышение надежности узлов тягового привода пассажирских электровозов ЭП1М и ЭП10 / Ю.Н. Соколов, А.С. Пономарев, В.Е. Дегтярев // Локомотив-информ. 2010. № 6. С. 4-11.
- 2. Вахромеева, Т.О. Снижение динамических нагрузок в тяговых приводах электровозов с рамным подвешиванием тяговых двигателей и карданными муфтами: автореф. дис. ... канд. техн. наук / Т.О. Вахромеева. М., 2014. 24 с.
- 3. Корнев, А.М. Модернизация системы подвешивания ТЭД электровоза постоянного тока 2ЭС6 / А.М. Корнев, Д.В. Липунов // Эксплуатационная надежность локомотивного парка и повышение эффективности тяги поездов. Омск: ОмГУПС, 2016. С. 237-242.
- 4. Аверченков, В.И. Основы математического моделирования технических систем: учеб. пособие / В.И. Аверченков, В.П. Федоров, М.Л. Хейфец. Брянск: БГТУ, 2004. 271 с.
- 5. Никитин, С.В. Моделирование новых технических решений локомотивов: учеб. пособие / С.В. Никитин. Брянск: БИТМ, 1988. 84 с.
- 6. Запорожцев, А.В. Моделирование технических систем / А.В. Запорожцев // Фундаментальные исследования. 2014. № 8-6. С. 1288-1294.
- 7. Измеров, О.В. Классификация как инструмент синтеза механической части тяговых приводов
- Sokolov, YU.N. Povyshenie nadezhnosti uzlov tyagovogo privoda passazhirskih ehlektrovozov EHP1M i EHP10 / YU.N. Sokolov, A.S. Ponomarev, V.E. Degtyarev // Lokomotiv-inform. 2010. № 6. S. 4-11.
- 2. Vahromeeva, T.O. Snizhenie dinamicheskih nagruzok v tyagovyh privodah ehlektrovozov s ram-nym podveshivaniem tyagovyh dvigatelej i kar-dannymi muftami: avtoref. dis. kand. tekhn. nauk/ T.O. Vahromeeva. M., 2014. 24 s.
- 3. Kornev, A.M. Modernizaciya sistemy podveshivaniya TEHD ehlektrovoza postoyannogo toka 2EHS6 / A.M. Kornev, D.V. Lipunov // EHkspluatacionnaya nadezhnost' lokomotivnogo parka i povyshenie ehffektivnosti tyagi poezdov. OMGUPS, Omsk: 2016. C. 237-242.
- Averchenkov, V.I. Osnovy matematicheskogo modelirovaniya tekhnicheskih sistem: ucheb. posobie / V.I. Averchenkov, V.P. Fedorov, M.L. Hejfec. Bryansk: BGTU, 2004. – 271s.
- 5. Nikitin, S.V. Modelirovanie novyh tekhniche-skih reshenij lokomotivov: ucheb. posobie / S.V. Nikitin. Bryansk: BITM, 1988. 84 s.
- 6. Zaporozhcev, A.V. Modelirovanie tekhnicheskih sistem /A.V. Zaporozhcev // Fundamental'nye issledovaniya. 2014. № 8-6. S. 1288-1294.
- Izmerov, O.V. Klassifikaciya kak instrument sinteza mekhanicheskoj chasti tyagovyh privodov zheleznodorozhnogo podvizhnogo sostava/ O.V. Iz-

- железнодорожного подвижного состава / О.В. Измеров, Г.С. Михальченко // Мир транспорта и технологических машин. Орел: ГУ-УНПК, 2012. № 4 (39). С. 53-60.
- 8. Воробьев, В.И. Общие принципы классификации механической части тяговых приводов локомотивов / В.И. Воробьев, О.В. Измеров, А.А. Пугачев, Д.А. Бондаренко // Совершенствование энергетических машин: сб. науч. тр. / под ред. В.В. Рогалёва. Брянск: БГТУ, 2015. С. 241-248
- 9. Измеров, О.В. Кибернетические аспекты методов синтеза электромеханических систем: монография / О.В. Измеров [и др.]; под ред. А.С. Космодамианского. Орел: ГУ-УНПК, 2015. 234 с.
- 10. Буч, Г. Объектно-ориентирован-ный анализ и проектирование с примерами приложений: [пер. с англ.] / Гради Буч, Роберт А. Максимчук, Майкл У. Энгл, Бобби Дж. Янг, Джим Коналлен, Келли А. Хьюстон. 3-е изд. М.: Вильямс, 2008. 720 с.
- 11. Koller, R. Konstructionsmethode fur den Mashinen-, Gerate- und Apparatebau / R. Koller. Springer, 1976. 191 p.
- 12. Roth, K. Konstruieren mit Konstruktionskatalogen. Band 1. Konstruktionslehre / K. Roth. – Berlin: Springer, 2000. – 440 p.
 - merov, G.S. Mihal'chenko // Mir transporta i tekhnologicheskih mashin. Orel: GU-UNPK, 2012. №4 (39). S. 53-60.
- Vorob'ev, V.I. Obshchie principy klassifika-cii mekhanicheskoj chasti tyagovyh privodov loko-motivov / V.I. Vorob'ev, O.V. Izmerov, A.A. Puga-chev, D.A. Bondarenko // Sovershenstvovanie ehnergeticheskih mashin: sb. nauch. tr. / pod red. V.V. Rogalyova. Bryansk: BGTU, 2015. ¬ S. 241-248.
- Izmerov, O.V. Kiberneticheskie aspekty meto-dov sinteza ehlektromekhanicheskih sistem: monografiya / O.V. Izmerov [i dr.]; pod red. A.S. Kosmodamianskogo. – Orel: Gosuniversitet - UNPK, 2015. – 234 s.
- 10. Buch, G. Ob"ektno-orientirovan-nyj analiz i proektirovanie s primerami prilozhenij [per. s angl.] / Gradi Buch, Robert A. Maksimchuk, Majkl U. EHngl, Bobbi Dzh. YAng, Dzhim Konallen, Kelli A. H'yuston. 3-e izd: M.: Vil'yams, 2008. 720 s.
- 11. Koller, R. Konstructionsmethode fur den Mashinen-, Gerate- und Apparatebau: / R. Koller. Springer, 1976. 191p.
- 12.Roth, K. Konstruieren mit Konstruktionskat-alogen. Band 1 Konstruktionslehre / K. Roth. Berlin, Springer: 2000. – 440p.

Статья поступила в редколлегию 15.06.17. Рецензент: д.т.н., профессор Брянского государственного технического университета Горленко О.А.

Сведения об авторах:

Воробьев Владимир Иванович, к.т.н., доцент кафедры «Подвижной состав железных дорог» Брянского государственного технического университета, e-mail: vladimvorobiev@yandex.ru.

Измеров Олег Васильевич, соискатель кафедры «Подвижной состав железных дорог» Брянского

Vorobiev Vladimir Ivanovich, Bryansk State Technical Univercity Ph. D., associate Professor of the Department "Railroad rolling stock" e-mail: vladimvorobiev@yandex.ru.

Izmerov Oleg Vasilevich, Bryansk State Technical Univercity Competitor of the Department "Railroad rolling stock", 56-14-44.

государственного технического университета, тел.: 56-14-44.

Маслов Максим Александрович, аспирант кафедры «Подвижной состав железных дорог» Брянского государственного технического университета, e-mail: <u>maslovmaksim32@mail.ru</u>.

Maslov Maksim Aleksandrovich, Bryansk State Technical Univercity Graduate student of the Department "Railroad rolling stock", <u>maslovmaksim32@mail.ru</u>.