
Наукоёмкие технологии в заготовительном производстве

УДК 621.791.13 DOI: 10.12737/20800

А В.И. Кузьмин, к.т.н, В.И. Лысак, чл.-кор. РАН, Е.А. Иваненко, магистрант (Волгоградский государственный технический университет, 400005, Россия, г. Волгоград, пр. Ленина 28) E-mail: kuzminvi@vstu.ru

Закономерности формирования биметаллических соединений при сварке взрывом с одновременной штамповкой

Приведены сравнительные результаты исследования влияния схемы динамического нагружения пластин на формирование биметаллического соединения при сварке взрывом с одновременной штамповкой. Показаны примеры практического применения комбинированного процесса сварки взрывом с одновременной штамповкой в машиностроении.

Ключевые слова: сварка взрывом; штамповка; матрица; радиальная деформация; прогиб; прочность.

V.I. Kuzmin, Can.Eng.,
V.I. Lysak, Corr. Member of RAS,
E.A. Ivanenko, Master's degree undergraduate
(Volgograd State Technical University,
28, Lenin Avenue, Volgograd 400005, Russia)

Regularities in bimetal joint formation at explosion welding with simultaneous punching

This paper reports the investigation of the effect of a plate dynamic loading scheme upon bimetal joint formation at explosion welding with simultaneous stamping. The investigation results of the effect of technological parameters and matrix material upon a radial deformation and quality of explosive pressed armco-iron+Steel 3 bimetal are shown. It is determined experimentally that additional punching in modes common for explosion welding without their intensification allow achieving considerable deformations and manufacturing qualitative bimetal blanks with a high factor of a part form. There are shown examples in a practical application of the combined process of explosion welding with simultaneous punching in mechanical engineering.

Keywords: explosion welding; punching; matrix; radial deformation; deflection; durability.

Важнейшей задачей научно-технического прогресса является разработка и внедрение в производство ресурсо- и энергосберегающих технологий, позволяющих получать новые материалы и изделия, сочетающие высокую прочность, надежность, коррозионную стойкость при существенной экономии дорогостоящих материалов. Этим требованиям в значительной степени отвечают биметаллические и композиционные материалы, широко применяющиеся в различных отраслях промышленности и технике.

Сварка взрывом является наиболее целесообразным и перспективным способом получе-

ния биметаллов, которые в дальнейшем подвергаются различным видам механической обработки, в том числе штамповке и гибке [1 – 3]. Вместе с тем, к нежелательным явлениям при сварке взрывом следует отнести остаточную макродеформацию сваренных заготовок, что связано с чрезмерной энергией продуктов детонации. Эту энергию можно эффективно использовать для штамповки, совместив ее со сваркой, т.е. осуществить комбинированный процесс сварки взрывом с одновременной штамповкой, что позволит исключить применение дорогостоящего прессового оборудования, уменьшить трудоемкость и повысить

производительность [4 – 6].

Целью данной работы является исследование влияния схемы динамического нагружения и технологических параметров на формирование биметаллического соединения при сварке взрывом с одновременной штамповкой.

При проведении исследований применяли схемы сварки взрывом с одновременной штамповкой, позволяющие получать биметаллические цилиндрические заготовки с плакирующим слоем как внутри, так и снаружи детали (рис. 1).

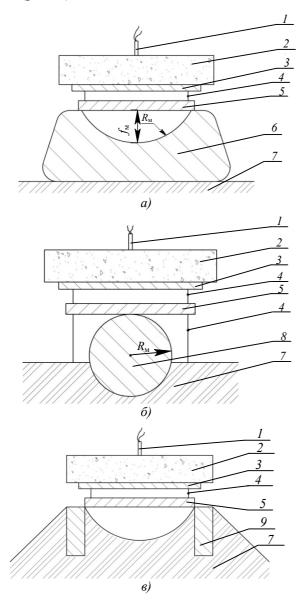


Рис. 1. Схемы сварки взрывом с одновременной штамповкой: a — с металлической матрицей цилиндрического профиля (№ 1); δ — с матрицей из массивного стального стержня (№ 2); e — с песчаной матрицей и опорными плитами (№ 3); I — электродетонатор; 2 — заряд ВВ; 3 — метаемая пластина; 4 — упор; 5 — неподвижная пластина; 6 — металлическая матрица; 7 — песок; 8 — стальной стержень; 9 — опорная плита

В качестве материалов исследования выбрана пара армко-железо + Ст3, обладающая хорошей свариваемостью. Режимы взрывного нагружения в каждом опыте сохранялись одинаковыми и выбирались из условия обеспечения равнопрочного соединения. Контроль скорости детонации взрывчатого вещества (ВВ) осуществляли электроконтактным методом [7] с регистрацией времени при помощи электронно-счетных частотомеров.

После сварки взрывом с одновременной штамповкой проводились замеры цилиндрического профиля полученной биметаллической заготовки для определения радиальной деформации ε_r и коэффициента формы детали f_{max}/a (рис. 2).

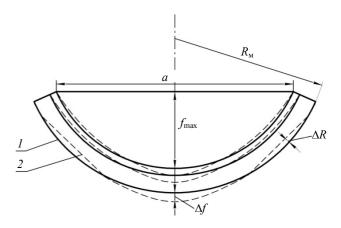


Рис. 2. Схема оценки качества штамповки сваренного биметалла:

I — профиль реальной отштампованной биметаллической заготовки; 2 — профиль эталонной биметаллической заготовки

Определение радиальной деформации пакета осуществлялось по методу нанесения «координатных сеток» [1]. Средняя радиальная деформация рассчитывалась по зависимости [8]:

$$\varepsilon_r = 0.5 \ln b_{\text{III}}/b$$

где $b_{\rm m}$ — максимальная ширина дуги биметаллического пакета после сварки и штамповки взрывом; b — исходная ширина пакета до взрывного нагружения.

Первоначально при сварке взрывом с одновременной штамповкой для проведения исследований применялась металлическая матрица закрытой формы с выфрезерованным в виде полуцилиндра профилем и просверленным в центре отверстием, обеспечивающим выход воздуха из полости матрицы (рис. 3, *a*).

Данная схема позволяла за счет расположе-

ния заряда ВВ в центре матрицы снизить воздействие ударных волн на ее торцевые участки, которые были смещены в область пониженного импульса давления вследствие существенного разлета продуктов взрыва. Однако использование матрицы закрытой формы с диаметром отверстия $d \leq 5$ мм приводило к образованию дефектов в виде непроваров, наплывов, искажений цилиндрического профиля. При больших значениях диаметра отверстия в центре биметаллической заготовки наблюдались значительные вмятины и трещины.

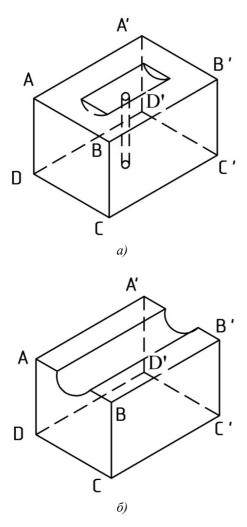


Рис. 3. Типы матриц для сварки взрывом с одновременной штамповкой цилиндрических изделий: a — закрытой формы; δ — открытой формы

Поэтому при проведении последующих исследований применялась матрица открытой формы (рис. 3, δ). Применение матрицы открытой формы позволило полностью устранить описанные выше недостатки, проявляющиеся при использовании матрицы закрытой формы. При этом следует отметить, что после многократного взрывного нагружения (5 -10 подрывов) в отдельных угловых участках

матрицы (точки АВСДи АВ'С'Д') появлялись трещины.

Для объяснения причин образования трещин в углах матрицы была рассмотрена схема взрывного нагружения цилиндра с наружным квадратным поперечным сечением (рис. 4).

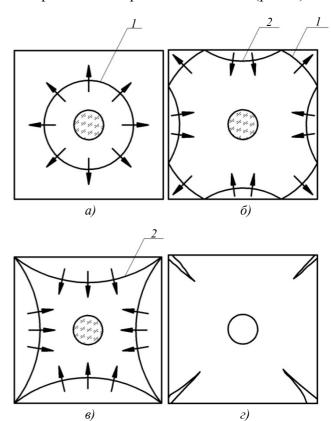


Рис. 4. Кинетика образования угловых разрушений при взрывном нагружении квадрата с внутренней цилиндрической полостью:

a — фронт сжатой ударной волны 1; δ — начало образования фронта отраженной волны растяжения (разгрузки) 2; ϵ — продвижение волн разгрузки на угловые участки; ϵ — образование угловых разрушений в результате взаимодействия волн сжатия и разгрузки

Если условно разделить цилиндр пополам, то такая схема будет аналогична предложенной на рис. 3, δ . При детонации заряда ВВ внутри цилиндрической полости образуется мощный фронт сжатой ударной волны l (рис. 4, a). При падении фронта ударной волны на наружные поверхности цилиндра возникают отраженные волны растяжения (разгрузки) 2, распространяющиеся внутри области сжатия (рис. 4, δ). При встрече фронтов волн разгрузки и сжатия вдоль диагональных сечений возникают значительные растягивающие напряжения (рис. 4, δ), которые и приводят к растрескиванию цилиндра в углах (рис. 4, ϵ). Поэтому с целью повышения дол-

говечности и исключения возможности образования трещин углы матрицы выполняли закругленными (см. рис. 1, a).

Для исследования закономерностей деформирования биметаллических заготовок при сварке взрывом с одновременной штамповкой применялись три основные схемы взрывного нагружения (см. рис.1): схема № 1 предназначена для нанесения плакирующего слоя внутри биметаллической заготовки; для получения деталей с расположением плакировки снаружи целесообразно применять схему № 2, в которой в качестве матрицы используют

массивный стальной стержень; для гибки и формовки толстых биметаллических заготовок, к которым не предъявляются высокие требования по качеству штамповки, применяют наиболее простую и технологичную схему № 3, позволяющую непосредственно на полигоне варьировать в достаточно широком диапазоне параметры и форму матрицы. Условия проведения экспериментов и результаты исследования влияния схемы динамического нагружения на формирование биметаллического соединения при сварке взрывом с одновременной штамповкой приведены в таблице.

Влияние схемы динамического нагружения на радиальную деформацию и относительную прочность армко-железо + Cт3 при сварке взрывом с одновременной штамповкой

Номер	Толщина пакета, мм	Ширина пакета (основной	Параметры матрицы, мм		Коэф- фициент формы		Относительная прочность
схемы	$\delta_{\Pi} = \delta_1 + \delta_2$	пластины) <i>b</i> , мм	$f_{\scriptscriptstyle m M}$	$R_{\scriptscriptstyle \mathrm{M}}$	детали $f_{ m max}/a$	ε_r , %	соединения $\sigma_{\text{отр}}/\sigma_{\text{исх}}$
1	2+5 2+10				0,32 0,35	4,7 10,0	1,12 1,10
2	2+5 2+10	125	60	60	0,30 0,30	4,3 8,8	1,15 1,10
3	2+5 2+10				0,36 0,38	5,4 10,3	1,08 1,10

Полученные результаты экспериментов свидетельствуют о возможности практического применения любой из трех исследуемых схем сварки взрывом с одновременной штамповкой. Во всех опытах была достигнута равнопрочность биметаллического соединения армко-железо + Ст3. При этом около 90 % образцов разрушалось по армко-железу с прочностью на отрыв слоев $\sigma_{\text{отр}} = 330...360$ МПа. Металлографические исследования микроструктуры границы соединения не выявили дефектов в виде непроваров, расслоений, трещин, пор и др.

Анализ результатов проведенных исследований показал, что дополнительная штамповка на общепринятых для сварки взрывом режимах без их интенсификации позволяет достигать значительных деформаций и получать качественные биметаллические заготовки с высоким коэффициентом формы детали.

Следующий этап исследований был направлен на изучение влияния материала матрицы на качество штамповки получаемых биметаллических заготовок в процессе сварки взрывом. При проведении исследований изменяли материал матрицы (металл, бетон, пе-

сок) и толщину пакета (δ_{Π} = 15...25 мм), остальные параметры во всех экспериментах сохранялись идентичными.

Экспериментально установлено, что наиболее высокое качество штамповки достигается при использовании металлической матрицы, для которой отклонение от заданной цилиндрической формы детали не превышает 2 % (рис. 5).

При использовании бетонной матрицы отклонение от заданной формы детали при толщине пакета $\delta_\Pi=15$ мм не превышает 4 %. С увеличением толщины пакета качество штамповки снижается и при $\delta_\Pi=25$ мм отклонение от заданной формы детали колеблется в диапазоне от 3 до 10 % (см. рис. 5).

Следует отметить, что бетонная матрица одноразового использования, поэтому ее целесообразно применять при единичном производстве крупногабаритных изделий сложной конфигурации. Использование песчаной матрицы для получения цилиндрического профиля детали нежелательно из-за низкого качества штамповки. Такие матрицы целесообразно применять для гибки толстых заготовок или штамповки изделий коробчатого типа.

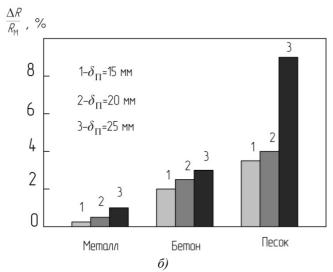


Рис. 5. Влияние материала матрицы на относительный прогиб (a) и относительный радиус (δ) отштам-пованных биметаллических заготовок

Для исследования влияния технологических параметров на формирование биметаллических заготовок при сварке взрывом с одновременной штамповкой применялась схема N2, позволяющая за счет простоты варьировать параметры матрицы в достаточно широком диапазоне. В первой серии экспериментов изменяли толщину пакета δ_{Π} при постоянном значении его ширины b и длины ℓ ; во второй серии – изменяли ширину пакета b при постоянном значении его толщины и длины; в третьей серии – изменяли длину ℓ пакета при постоянном значении его толщины и ширины.

Результаты экспериментов показали, что с увеличением толщины пакета до $\delta_{\Pi}=17$ мм при постоянном значении его ширины b и длины ℓ сначала наблюдается рост радиальной деформации биметаллической заготовки до $\varepsilon_r \sim 12$ %, при этом максимальный прогиб $f_{\rm max}$

остается постоянным (рис. 6, область A). Дальнейшее увеличение толщины пакета δ_{Π} приводит к резкому снижению как радиальной деформации ϵ_r , так и максимального прогиба f_{max} биметаллической заготовки (рис. 6, область B).

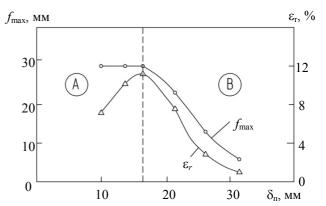


Рис. 6. Влияние толщины пакета δ_{Π} на максимальный прогиб f_{\max} и радиальную деформацию ϵ_r биметаллической заготовки

С увеличением ширины пакета b при постоянном значении его толщины δ_{Π} и длины ℓ максимальный прогиб возрастает до $f_{\text{max}} \sim 8$ %, а радиальная деформация при этом практически остается постоянной $\varepsilon_r \sim 5$ % (рис. 7).

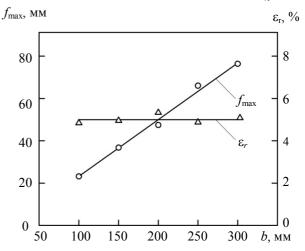


Рис. 7. Влияние ширины пакета b на максимальный прогиб f_{\max} и радиальную деформацию ε_r биметаллической заготовки

По сравнению с шириной b пакета его длина ℓ не оказывает существенного влияния на радиальную деформацию ϵ_r . Так, увеличение длины пакета ℓ в пять раз (от 100 до 500 мм) при постоянном значении его толщины δ_{Π} и ширины b практически не приводит к изменению максимального прогиба f_{max} и радиальной деформации ϵ_r , величины которых на протяжении всей длины пакета остаются постоянными: $f_{\text{max}} = 23...24$ мм; $\epsilon_r = 9...9,5$ %.

Полученные результаты проведенных исследований послужили основой для разработки новых комбинированных технологических процессов изготовления с помощью сварки взрывом с одновременной штамповкой профилированных изделий для нужд машиностроения (рис. 8), что по сравнению с базовыми технологиями позволяет исключить применение прессо-штампового оборудования, уменьшить трудоемкость, повысить производительность при существенной экономии дорогостоящих материалов.

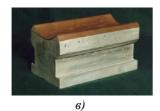


Рис. 8. Изделия с цилиндрическим профилем, полученные сваркой взрывом с одновременной штамповкой:

- а бронзо-стальной вкладыш подшипника скольжения;
- δ бронзо-стальная накладка насоса;
- e медно-алюминиевая токоподводящая колодка

ВЫВОДЫ

- 1. При сварке взрывом с одновременной штамповкой можно применять как металлические матрицы, обеспечивающие отклонение от заданной цилиндрической формы детали не более 2 %, так и бетонные с точностью формирования цилиндрического профиля до 10 %. Песчаные матрицы целесообразно применять для гибки толстых заготовок или формовки изделий коробчатого типа, к которым не предъявляются высокие требования по качеству штамповки.
- 2. Экспериментально установлено, что с увеличением толщины пакета до 17 мм при постоянном значении его ширины и длины сначала наблюдается рост радиальной деформации до $\varepsilon_r \sim 12$ %, при этом максимальный прогиб $f_{\rm max}$ остается постоянным, а затем дальнейшее увеличение толщины пакета приводит к резкому снижению как радиальной деформации ε_r , так и максимального прогиба

 $f_{\rm max}$ биметаллической заготовки.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. **Лысак, В.И., Кузьмин, С.В.** Сварка взрывом. М.: Машиностроение-1, 2005, 544 с.
- 2. **Яковлев, И.В., Пай, В.В.** Сварка металлов взрывом. Новосибирск: СО РАН, 2013. – 565 с.
- 3. **Оголихин, В.М., Яковлев, И.В.** Сварка взрывом в электрометаллургии. Новосибирск: СО РАН, 2009. 160 с.
- 4. **Трыков, Ю.П., Шморгун, В.Г., Гуревич, Л.М.** Деформация слоистых композитов. Волгоград: РПК "Политехник", 2001. 241 с.
- 5. Лысак, В.И., Кузьмин, С.В., Кривенцов, А.Н., Кузьмин, В.И. Физические основы и области практического применения сварки металлов взрывом // Наука производству. 2005. №1. С.17–21
- 6. **Mynors D., Zhang B.** Applications and capabilities of explosive forming //J. *Mater. Proc.Technol.* 2002. N_2 125. P. 1 25.
- 7. **Кузьмин, В.И., Кривенцов, А.Н., Балуев, А.В.** Кинетика полета, определение скоростей движения и соударения пакета при сварке взрывом // Сварочное производство. -2000. N = 3. C.25 28.
- 8. **Анучин, М.А.** Штамповка взрывом. М.: Машиностроение, 1972. 152 с.

REFERENCES

- 1. Lysak, V.I., Kuzmin, S.V. *Explosion Welding.* M.: Mechanical Engineering-1, 2005, pp. 544.
- 2. Yakovlev, I.V., Pai, V.V. *Metal Welding with Explosion*. Novosibirsk: SB RAS, 2013. pp. 565.
- 3. Ogolikhin, V.M., Yakovlev, I.V. *Explosion Welding in Electrometallurgy*. Novosibirsk: SB RAS, 2009. pp. 160.
- 4. Trykov, Yu.P., Shmorgun, V.G., Gurevich, L.M. *Layered Composite Deformation.* Volgograd: RPC "Polytechnic", 2001. pp. 241.
- 5. Lysak, V.I., Kuzmin, S.V., Kriventsov, A.N., Kuzmin, V.I. Physical fundamentals and fields of practical use of metal explosion welding // *Science to Production*. − 2005. − №1. − pp.17–21
- 6. Mynors D., Zhang B. Applications and capabilities of explosive forming //J. Mater. Proc.Technol. 2002. № 125. P. 1–25.
- 7. Kuzmin, V.I., Kriventsov, A.N., Baluiev A.V. Flight kinetics, definition of motion speeds and package concussion at explosion welding // Welding Engineering. − 2000. − № 3. − pp. 25–28.
- 8. Anuchin, M.A. *Explosive Fabrication*. M.: Mechanical Engineering, 1972. pp. 152.

Рецензент д.т.н. О.Н. Федонин