
Технологии наукоёмких материалов *и нанотехнологии*

УДК 621.785.5 DOI: 10.12737/20132

> Х.М. Рахимянов, д.т.н., Ю.В. Никитин, к.т.н., А.Х. Рахимянов, к.т.н., Ю.С. Семенова, к.т.н., А.С. Еремина, ассистент

(Новосибирский государственный технический университет, 630073, г. Новосибирск, пр-т К. Маркса, 20)

E-mail: kharis51@mail.ru

Теоретическое исследование процесса высокоскоростного нагрева поверхностного слоя серого чугуна

Рассмотрены особенности формирования температурного поля в поверхностном слое серого чугуна при высокоскоростном нагреве. На основе решения дифференциального уравнения теплопроводности показано влияние режимных параметров теплового источника (плотность теплового потока, коэффициента сосредоточенности и скорости перемещения) на характеристики термоупрочненного слоя.

Ключевые слова: тепловой источник; плотность теплового потока; коэффициент сосредоточенности; температура фазовых превращений; серый чугун.

Kh.M. Rakhimyanov, D.Eng., Yu.V. Nikitin, Can.Eng., A.Kh. Rakhimyanov, Can.Eng., Yu.S. Semyonova, Can.Eng., A.S. Eremina, Assistant (Novosibirsk State Technical University, 20, K. Marx Avenue, 630073, Novosibirsk)

Theoretical investigation of high-speed heating process in surface layer of grey iron

In the paper there is shown the topicality of theoretical researches of processes arising in a surface layer of materials at combined machining methods. The peculiarities of thermal processes development in a surface layer of grey iron at high speed heating are considered. On the basis of the solution of a thermal conductivity differential equation the influence of heat source parameters (heat flow density, coefficient of concentration and movement speed) upon characteristics of a temperature field in a surface layer of material worked. The quantitative correlations of dimensions of an area of phase changes in a surface layer at a constant value of heat flow density and at the ensuring of constancy of maximum temperature value on the surface worked are determined. The characteristics correlation of a temperature field at the change of a coefficient of concentration and flow density of a heat source is revealed.

Keywords: heat source; heat flow density; coefficient of concentration; phase change temperature; grey iron.

Необходимость повышения эксплуатационной надежности деталей обусловлена непрерывным ростом механической и тепловой нагруженности элементов современных машин и механизмов. В связи с этим, к деталям машин и инструментам предъявляются комплексные требования по обеспечению не только высокой прочности, но и сопротивлению переменным и динамическим нагрузкам, возникающим в процессе эксплуатации.

Увеличение только статической прочности материала деталей не всегда означает повышение их долговечности, так как с ростом предела прочности материала увеличивается вероятность усталостного и хрупкого разрушения деталей, работающих в условиях знакопеременного нагружения, а также возрастает чувствительность к концентрации напряжений и различного рода дефектам на поверхности деталей при динамических нагрузках.

Возможности традиционных поверхностных методов термической [1, 2], химикотермической [3, 4], деформационной [5, 6] обработок в достижении высоких показателей эксплуатационных свойств деталей машин зачастую оказываются исчерпанными. Поэтому представляется перспективным направление по созданию новых технологических методов формирования высокопрочного состояния поверхностного слоя металлов и сплавов. К ним, в первую очередь, следует отнести комбинированные методы, основанные на определенном сочетании высокоинтенсивных термических и деформационных процессов [7, 8].

Теоретические основы комбинирования высокоинтенсивных тепловых и деформационных процессов в поверхностной обработке представлены в работе [9]. Они направлены на создание ряда базовых схем комбинированной обработки, основанных на различном сочетании высокоскоростного поверхностного нагрева и импульсного пластического деформирования. В работе дан анализ тепловых, диффузионных, деформационных процессов, ответственных за формирование как структурнофазового, напряженно-деформированного состояния материала поверхностного слоя, так и микрогеометрии обрабатываемой поверхности.

Следует отметить, что теоретические и экспериментальные исследования в данной работе посвящены изучению комбинированных обработок сталей различных марок. В то же время в машиностроении чугун в качестве конструкционного материала получил широкое распространение. Следовательно, решение задач, связанных с повышением эксплуатационных свойств этого материала, имеет большое ресурсосберегающее значение. Для реализации схем комбинированной обработки чугунных деталей необходимо как теоретическое, так и экспериментальное изучение процессов в поверхностном слое чугуна в условиях высокоскоростного нагрева и импульсного пластического деформирования.

Настоящая статья посвящена изучению

влияния параметров теплового источника на характеристики температурного поля в поверхностном слое серого чугуна марки СЧ-21 ГОСТ 1412-85 на основе математического моделирования процесса высокоскоростного нагрева как одной из стадий комбинированной обработки.

Математическое моделирование тепловых процессов при высокоскоростном нагреве основано на численном решении дифференциального уравнения теплопроводности [9]:

$$\begin{aligned} \mathbf{v}C\frac{\partial T}{\partial z} &= \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right); \\ \lambda \frac{\partial T}{\partial x} \bigg|_{x=0} &= 0; \qquad \lambda \frac{\partial T}{\partial x} - \beta (T - T_0) \bigg|_{x=X} &= 0; \\ \lambda \frac{\partial T}{\partial y} - \beta (T - T_0) \bigg|_{y=0} &= 0; \qquad \lambda \frac{\partial T}{\partial y} \bigg|_{y=Y} &= q; \\ T \bigg|_{z=0} &= T_0; \qquad \lambda \frac{\partial T}{\partial z} \bigg|_{z=0} &= 0; \qquad \lambda \frac{\partial T}{\partial z} \bigg|_{z=Z} &= 0, \end{aligned}$$

где T=T(x, y, z) – температура детали; T_0 – температура внешней среды; v – скорость перемещения источника нагрева; q=q(x,z) – плотность теплового потока на внешней поверхности детали; $\lambda=\lambda(T)$ – коэффициент теплопроводности; C=C(T) – удельная объемная теплоемкость; β – коэффициент теплоотдачи; X,Y,Z – размеры расчетной области.

Настоящее исследование процесса нагрева поверхностного слоя проводилось с учетом теплофизических особенностей серого чугуна. Откликом обрабатываемого материала на воздействие теплового источника является температурное поле, которое может быть представлено в табличной форме или графически (линиями равных температур – изотермами). Для количественной оценки температурного поля использованы: текущие значения температур T(x, y, z); значение максимальной температуры на поверхности $T_{\rm max}$; глубина проникновения Y_{ϕ} и ширина распространения $2X_{\phi}$ зоны фазовых превращений. Параметрами воздействия теплового источника являются: скорость относительного перемещения у; коэффициент сосредоточенности к; максимальная плотность теплового потока q_0 . Схема расчетной области температурного поля в системе координат показана на рис. 1.

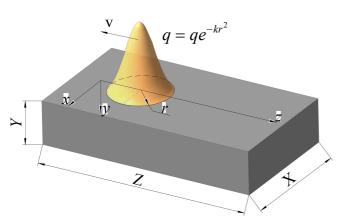


Рис. 1. Схема расчета температурных полей

Результаты расчета температурного поля в виде изотермических линий показаны на рис. 2.

Представление температурного поля в виде изотермических линий наглядно демонстрирует распределение энергии теплового источника в объеме материала. Положение и форма изотермы, соответствующей температурному уровню фазовых превращений серого чугуна, геометрически отображает размеры $(Y_{\phi}, 2X_{\phi})$ и форму объема термоупрочненного материала.

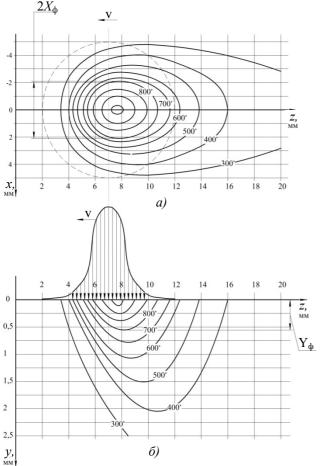
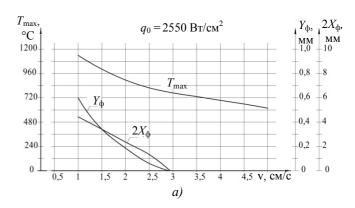



Рис. 2. Температурное поле в форме изотерм по поверхности (a) и по глубине (δ) :

 $q_0 = 2550 \text{ BT/cm}^2$; $k = 12 \text{ cm}^{-2}$; v = 1 cm/c

Учитывая скоростной характер нагрева, а также особенности фазовых превращений в сером чугуне, в настоящем исследовании значение критической точки эвтектоидного превращения принято равным 800 °C. Это позволило оценить ширину зоны фазовых превращений $2X_{\Phi} = 4,3$ мм, при этом максимальная глубина проникновения фазовых превращений составила $Y_{\Phi} = 0,6$ мм для исследованных параметров теплового источника.

Расчеты математической модели показали различный характер влияния параметров теплового источника на характеристики температурного поля. Так повышение скорости перемещения теплового источника снижает глубину проникновения температур в расчетной области, увеличивая смещение центра изотерм от центра источника в направлении обратном его перемещению. В тоже время, ширина распространения температуры фазовых превращений $2X_{\phi}$ изменяется в меньшей степени, чем глубина Y_{ϕ} . Увеличение скорости перемещения у теплового источника при неизменных значениях коэффициента сосредоточенности к и максимальной плотности теплового потока q_0 приводит к снижению значения максимальной температуры на поверхности, а также уменьшению размеров Y_{ϕ} , $2X_{\phi}$ зоны фазовых превращений (рис. 3, a).

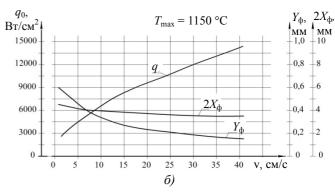
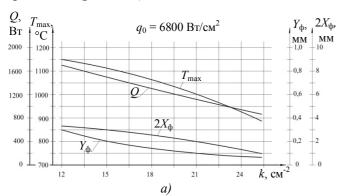



Рис.3. Влияние скорости перемещения источника на характеристики температурного поля:

a – при q_0 = const; δ – при T_{max} = const; k = 12 см⁻²

Одновременное повышение плотности теплового потока источника при увеличении скорости его перемещения позволяет поддерживать неизменным уровень максимального значения температуры на поверхности. Однако, принимая во внимание тот факт, что скорость распространения теплоты в материале имеет конечное значение, следует отметить, что увеличение скорости перемещения источника и соответствующее повышение плотности его теплового потока не обеспечивают сохранение неизменными значения размеров зоны фазовых превращений (рис. 3, δ).

Другим фактором, оказывающим значительное влияние на характер температурного поля, является коэффициент сосредоточенно сти источника к. Это связано с тем, что эффективная мощность теплового источника Q обратно пропорциональна коэффициенту сосредоточенности. Так, повышение коэффициента сосредоточенности при неизменном значении максимальной плотности теплового потока q_0 ведет к снижению, как значения максимальной температуры, так и размеров зоны фазовых превращений (рис. 4, а). Одновременное повышение q_0 и k для обеспечения постоянства значения максимальной температуры на поверхности приводит к снижению геометрических параметров зоны фазовых превращений (рис. 4, δ).

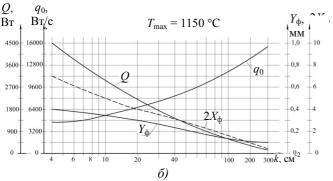


Рис.4. Влияние коэффициента сосредоточенности источника на характеристики температурного поля: a – при q_0 = const; σ – при $T_{\rm max}$ = const; v = 10 см/с

Учитывая, что эффективная мощность теплового источника Q прямо пропорциональна плотности теплового потока q, следует ожидать, что влияние последнего на характеристики температурного поля окажется обратным по сравнению с действием такого параметра теплового источника как коэффициент сосредоточенности. Действительно, при постоянных значениях k и v уменьшение значения максимальной плотности теплового потока q_0 приводит к снижению как величины максимальной температуры на поверхности, так и сокращению размеров зоны фазовых превращений (рис. 5).

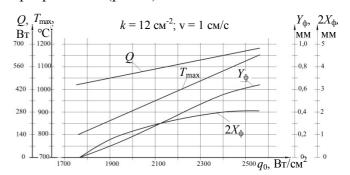


Рис.5. Влияние значения максимальной плотности теплового потока источника на характеристики температурного поля

Выводы

Таким образом, моделирование тепловых процессов при высокоскоростном нагреве чугуна позволило выявить основные закономерности формирования термоупрочненного слоя и установить количественные соотношения его основных характеристик с режимными параметрами теплового воздействия. Выполненные исследования являются первым этапом в изучении процессов в поверхностном слое обрабатываемого материала в условиях комбинированного, в частности термодеформационного воздействия.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. **Григорьянц А.Г., Шиганов И. Н., Мирюсов А.И.** Технологические процессы лазерной обработки / под ред. А.Г. Григорьянца М.: Изд-во МГТУ им. Н.Э. Баумана, 2008. 664 с.
- 2. **Исхакова Г.А., Рахимянов Х.М.** Исследование микроструктуры и механических свойств поверхностного слоя стали 45 после плазменного термоупрочнения // Электронная обработка материалов. 1987. № 5. С. 24–27.
- 3. **Рахимянов Х.М., Еремина А.С.** Цементация низкоуглеродистой стали при нагреве в электролитах // Упрочняющие технологии и покрытия. 2006. № 3. С. 9–13.

- 4. **Суминов И.В., Белкин П.Н., Эпельфельд А.В. и** др. Плазменно-электролитическое модифицирование поверхности металлов и сплавов / под общ. ред. И В. Суминова. В 2-х т. Т. 1. М.: Техносфера, 2011. 464 с.
- 5. **Рахимянов Х.М., Семенова Ю.С.** Прогнозирование геометрического состояния поверхности цилиндрических деталей из стали 45 при ультразвуковом поверхностном пластическом деформировании // Обработка металлов (технология, оборудование, инструменты). 2011. № 3. С. 11–17.
- 6. **Технологические процессы** поверхностного пластического деформирования / А.В. Киричек, В.Ю. Блюменштейн, С.А.Зайдес, Х.М. Рахимянов и др.; под ред. С.А. Зайдеса. Иркутск: 2007. 404 с.
- 7. **Иванцивский В.В., Рахимянов Х.М.** Технологическое обеспечение качества поверхностного слоя деталей машин при интеграции поверхностной термической и финишной механической обработки // Упрочняющие технологии и покрытия. 2005. № 6. С.43–46.
- 8. **Рахимянов Х.М., Исхакова Г.А.** Поверхностное упрочнение с использованием низкотемпературной плазмы и ультразвука // Электронная обработка материалов. 1990. № 5. С. 9–12.
- 9. **Высокоэнергетические** процессы обработки материалов / Солоненко О.П., Алхимов А.П., Марусин В.В., Рахимянов Х.М. и др.; отв. ред. М.Ф. Жуков, В.М. Фомин. Новосибирск: 2000. Т.18. Низкотемпературная плазма, 425 с.

REFERENCES

1. Grigoriyants A.G., Shiganov I.N., Miryusov A.I. *Technological Processes of Laser Working* / under the editorship of A.G. Grigoriyants M.: Publishing House of Bauman STU of Moscow, 2008. pp. 664.

- 2. Iskhakova G.A., Rakhimyanov Kh.M. Investigation of microstructure and stress-strain properties of a steel 45 surface layer after plasma thermo-strenghtening // Material Electron *Processing*. 1987. № 5. pp. 24–27.
- 3. Rakhimyanov Kh.M., Yeryomina A.S. Low-carbon steel case-hardening at heating in electrolytes // Strengthening Technologies and Coverings. 2006. № 3. pp. 9–13.
- 4. Suminov I.V., Belkin P.N., Epelfeld A.V. and others. *Plasma-Electrolyte Modification of Metal and Alloy Surfaces* / under the general editorship of I.V. Suminov. In 2 Vol., Vol. 1. M.: Technosphere, 2011. pp. 464.
- 5. Rakhimyanov Kh.M., Semyonova Yu.S. Prediction of geometrical state of cylinder part surfaces made of steel 45 at ultrasonic surface plastic deformation // Metal Machining (Techniques, Equipment, Tools). 2011. № 3. pp. 11–17.
- 6. Technological Processes of Surface Plastic Deformation / A.V. Kirichek, V.Yu. Blumenstein, S.A.Zaides, Kh.M. Rakhimyanov and others; under the editorship of S.A. Zaides. Irkutsk: 2007. pp.404.
- 7. Ivantsivsky V.V., Rakhimyanov Kh.M. Quality technological support of machine parts surface layer at integration of surface thermal and finish machining // Strengthening Technologies and Coverings. 2005. № 6. pp.43–46.
- 8. Rakhimyanov Kh.M., Iskhakova G.A. Surface strengthening with use of low-temperature plasma and ultrasound // *Material Electronic Processing*. 1990. № 5. pp. 9–12.
- 9. High-energy processes of material processing / Solonen-ko O.P., Alkhimov A.P., Marusin V.V., Rakhimyanov Kh.M. and others.; executive editor. M.F. Zhukov, V.M. Fomin. Novosibirsk: 2000. Vol.18. *Low-temperature Plasma*, pp. 425.

Рецензент д.т.н. С.В. Давыдов

УДК 621.9.015-621.432 DOI: 10.12737/20133

А.Ф. Дорохов, д.т.н.

(ФГБОУ ВПО Астраханский государственный технический университет), **А.Г. Проватар**, начальник судоводительского отделения факультета (Каспийский институт морского и речного транспорта— филиал ФГБОУ ВПО «ВГАВТ»), **Ю.И. Матвеев**, д.т.н.

(Волжский государственный университет водного транспорта) E-mail: dorokhovaf@rambler.ru

Повышение качества поверхностного слоя зеркала рабочего цилиндра поршневых ДВС

Рассмотрена задача создания в поверхностном слое зеркала рабочего цилиндра структуры, обеспечивающей противоизносные и антифрикционные свойства.

Ключевые слова: фуллерены; диффузия; безабразивное хонингование; шаржирование; коэффициент диффузии; зеркало цилиндра.