Технология обработки на станках с ЧПУ и обрабатывающих центрах

УДК 621.9:62-187:621.9.02-229 DOI: 10.12737/23486

> О.Ю. Казакова, к.т.н., А.А. Казаков, студент (ФГБОУ ВО Самарский государственный технический университет, Россия, 443100, Самара, ул. Молодогвардейская, 244) E-mail: kazakova8080@mail.ru

Повышение точности обработки на станках за счет минимизации погрешностей инструментальных систем

Рассмотрены вопросы повышения точности при обработке, а именно: минимизация погрешностей конической части инструментальной оправки при автоматической смене инструментов, разработка рекомендаций по качеству изготовления конусов.

Ключевые слова: инструментальные оправки; смена инструмента; станок; точность обработки.

O.Yu. Kazakova, Can. Eng., A.A. Kazakov, Student (FSBEI HE Samara State Technical University, 244, Molodogvardeiskaya Str. Samara Russia, 443100)

Machining accuracy increase on machines through error minimization in cutting-tool systems

The problems of accuracy increase at machining are considered, in particular: error minimization in a taper part of a toolholder at automatic tool change, the development of recommendations on cone manufacturing quality.

Keywords: adapters; change of tool; machine; machining accuracy.

Точность обработки Δ на станке зависит не только от погрешностей, возникающих в технологической системе станка $\Delta_{станка}$, но и от дополнительных погрешностей, связанных с работой механизма смены инструмента Δ_{cu} :

$$\Delta = \Delta_{\rm cmanka} + \Delta_{\rm cu}$$

Имея в виду симметричность конструкции оправки, конуса шпинделя и механизма закрепления относительно оси шпинделя, можно предположить, что наиболее возможной погрешностью при смене инструмента является осевая погрешность оправки в гнезде шпинделя. Указанные погрешности значительно превосходят угловые и радиальные в связи с тем, что при смене инструмента практически отсутствуют значительные боковые силы, что достигается "плавающим" (свободным) размещением оправки в гнезде транспортирующего манипулятора и малостью упругих реакций с его стороны.

Осевые погрешности оправки при смене инструмента ξ формируются на двух этапах: при базировании ξ_{Γ} и закреплении ξ_{3} [1]:

$$\xi = \xi_{\Gamma} - \xi_3 \,,$$

где $\xi > 0$ и $\xi_{\Gamma} > 0$, если оправка не доходит до требуемого положения и в этом случае погрешности установки будут определяться условиями сопряжения конических поверхностей шпинделя и оправки, которые во многом связаны с отклонениями указанных конических поверхностей от идеальных.

Указанные погрешности применительно к конкретному станку имеют как постоянную, так и случайную составляющую.

Таким образом, значительным резервом повышения точности обработки является определение путей минимизации случайной составляющей, что требует рассмотрения условий ее формирования.

В связи с этим рассмотрим задачу определения точности осевого расположения инструментальной оправки, имеющей погрешности формы базирующего конуса, при закреплении в идеальный конус шпинделя.

Указанные отклонения приведут к тому, что базирование оправки в гнездо шпинделя будет происходить не по множеству точек, лежащих на конической поверхности, а в точках, расположенных на окружности, которая находится в плоскости, перпендикулярной оси конуса [2, 3].

Погрешности формы базирующего конуса инструментальной оправки учтем путем представления его в виде усеченного конуса высотой L, основания которого представляют из себя эллипсы с осями A и B для большего основания и a и b – для меньшего основания. В общем случае $A \neq B \neq D$ и $a \neq b \neq d$, где D и d – больший и меньший номинальные диаметры гнезда шпинделя соответственно.

Будем считать в дальнейших выкладках, что A > B и a > b. Извернутостью конуса оправки в продольном направлении пренебрегаем, т.е. считаем, что оси A и a лежат в одной плоскости. Угол конуса оправки в плоскости, проходящей через большие оси A и a, обозначим через 2 β . Причем, $\beta \neq \alpha$, где 2α – номинальный угол конуса гнезда шпинделя, определяемый стандартом.

При приложении усилия затяжки произойдет упругая деформация поверхностных слоев соединения оправки и гнезда шпинделя, и осевое положение оправки изменится на величину ξ_3 .

Учитывая высокое качество поверхностей контакта и значительные удельные давления в зоне контакта, можно считать, что возникающие в зоне контакта упругие силы пропорциональны упруго деформированному объему, таким образом:

$$k \cdot \Delta V \cdot \sin \alpha = P_{3AT}, \qquad (1)$$

где k – коэффициент контактной податливости; ΔV – упруго деформированный объем; P_{3at} – усилие закрепления оправки. Для каждого из рассмотренных выше случаев возможны два варианта контакта:

 упругий контакт наблюдается по всей поверхности соединения (полный контакт);

- упругий контакт происходит по части поверхности соединения (неполный контакт).

Промежуточное состояние между этими вариантами назовем предельным контактом.

Рассмотрим определение ΔV .

1. <u>α < β полный контакт (рис. 1, *a*, *б*).</u>

Рис. 1. Формирование упруго деформированного объема при α < β:

a – полный контакт; OT > H;

б – полный контакт; *ОT* < *H*; *в* – неполный контакт;

c – формирование площади S(x)

Упруго деформированный объем может быть определен по формуле

$$\Delta V = \int_{h}^{H} S(x) dx,$$

где S(x) – площадь упруго деформированной области в сечении, перпендикулярном оси на расстоянии x от центра координат O (рис. 1);

$$H = 0.5D$$
ctg α ; $h = H - L$.

Площадь S(x) найдем, заменяя дуги окружности и участки эллипса прямыми линиями.

Для этого предварительно определим координаты точки G (рис. 1, *г*) пересечения эллипса и окружности в сечении x:

$$\begin{cases} \frac{4z^2}{A^2(x)} + \frac{4y^2}{B^2(x)} = 1; \\ z^2 + y^2 = 0,25D^2(x) \end{cases}$$

размеры оправки в сечении x; D(x) – значение, определяющее диаметр гнезда шпинделя в сечении x.

Из приведенной системы уравнений получим:

$$y_G = \frac{B(x)}{2} \sqrt{\frac{A^2(x) - D^2(x)}{A^2(x) - B^2(x)}}.$$

Тогда

$$S(x) = 2\delta(x) \cdot y_G = \delta(x) \cdot B(x) \sqrt{\frac{A^2(x) - D^2(x)}{A^2(x) - B^2(x)}}$$

Значения A(x); B(x); D(x) и $\delta(x)$ определяются по следующим зависимостям:

$$A(x) = A - D \operatorname{ctg} \alpha \cdot \operatorname{tg} \beta + 2x \operatorname{tg} \beta;$$

$$B(x) = B \left[\frac{x - H}{(0,5D + \delta_D) \operatorname{ctg} \beta} + 1 \right]; \quad (3)$$

$$D(x) = 2x \operatorname{tga};$$

$$\delta(x) = \delta_D + (0.5D \operatorname{ctga} - x)(\operatorname{tga} - \operatorname{tg\beta}),$$

где δ_D - см. рис. 2.

2. <u>α < β неполный контакт (рис. 1, *в*).</u> В этом случае упруго деформированный объем определяется по формуле:

$$\Delta V = \int_{h_X}^{H} S(x) dx$$

где $h_X = 0.5D$ сtg $\alpha - \frac{\delta_D}{\text{tg}\beta - \text{tg}\alpha}$.

<u>3. α > β полный контакт (рис. 2, *a*).</u>

Для этого случая можно воспользоваться формулами, приведенными выше для случая $\alpha < \beta$ и условия полного контакта, учитывая зависимость между δ_D и δ_d (рис. 2, *a*):

$$\delta_D = \delta_d - L(\mathbf{t}\mathbf{g}\alpha - \mathbf{t}\mathbf{g}\beta).$$

4. <u>α > β неполный контакт (рис. 2, б).</u>

Параметры, необходимы для нахождения S(x), в этом случае могут быть определены по формулам

$$A(x) = D - 2Ltg\alpha + 2[\delta_d + (x - 0.5Dctg\alpha + L)tg\beta];$$

$$B(x) = \frac{B[x + (0.5d + \delta_d)ctg\beta]}{L + (0.5d + \delta_d)ctg\beta};$$
(4)

 $D(x) = 2xtg\alpha;$ $\delta(x) = \delta_d + (x - 0.5Dctg\alpha + L)(tg\beta - tg\alpha),$ где $d = D - 2Ltg\alpha.$

Рис. 2. Формирование упруго деформированного объема при α > β:

а – полный контакт; б – неполный контакт

Указанные выше зависимости для определения ΔV можно упростить, если пренебречь криволинейностью ребер, ограничивающих упруго деформированные объемы вдоль образующих конусов. Тогда эти объемы можно рассматривать как пирамиды и для полного контакта:

$$\Delta V = \frac{L}{3} \left(S_1 + \sqrt{S_1 S} + S_2 \right),$$

где S_1 и S_2 – площади упруго деформированных областей по диаметрам D и d соответственно.

Для определения S_1 и S_2 можно воспользоваться следующими зависимостями: <u>– для $\alpha < \beta$ и A > D:</u>

$$S_{1} = \delta_{D} \cdot B \sqrt{\frac{(D + 2\delta_{D})^{2} - D^{2}}{(D + 2\delta_{D})^{2} - B^{2}}}$$

Значение S_1 рассчитывается по формулам (2) и (3) при

$$x = 0.5D$$
сtg $\alpha - L$ и $A = D + 2\delta_D$;

<u>– для α < β и A < D:</u>

$$S_1 = \delta_D \cdot B \sqrt{\frac{A^2 - (A - 2\delta_D)^2}{A^2 - B^2}} .$$

Значение S_2 рассчитывается по формулам (2) и (3) при

$$x = 0.5D$$
сtg $\alpha - L$ и $D = A - 2\delta_D$;

<u>– для α > β и a > d:</u>

значение S_1 рассчитывается по формуле (2) при

$$A(x) = D + 2\delta_d - 2L(\operatorname{tg}\alpha - \operatorname{tg}\beta g; B(x) = B;)$$

$$D(x) = D; \ \delta(x) = \delta_d + L(\operatorname{tg}\beta - \operatorname{tg}\alpha).$$

Для определения S₂ используется формула (2) при

$$A(x) = A - 2L \operatorname{tg}\beta; \ B(x) = B\left(1 - \frac{2L}{A\operatorname{ctg}\beta}\right);$$
$$D(x) = A - 2L \operatorname{tg}\beta - 2\delta_d; \ \delta(x) = \delta_d.$$

<u>– для α > β и a < d:</u>

значение S_1 рассчитывается по формуле (2) при

$$A(x) = A; B(x) = B;$$

$$D(x) = A - 2\delta_d + 2L(tg\alpha - tg\beta);$$

$$\delta(x) = \delta_d + L(tg\beta - tg\alpha).$$

Для определения S₂ используется формула (2) при

$$A(x) = D - 2L \operatorname{tg} \alpha + 2\delta_{d}; \ B(x) = B\left(1 - \frac{2L}{A \operatorname{ctg} \beta}\right);$$
$$D(x) = D - 2L \operatorname{tg} \alpha; \ \delta(x) = \delta_{d}.$$

Для неполного контакта:

- при
$$\alpha < \beta \Delta V = \frac{S_1}{3} \cdot \frac{\delta_D}{\operatorname{tg}\beta - \operatorname{tg}\alpha};$$

- при
$$\alpha > \beta \Delta V = \frac{S_2}{3} \cdot \frac{\delta_d}{\operatorname{tg} \alpha - \operatorname{tg} \beta},$$

где значения S_1 и S_2 рассчитываются по тем же формулам, что и для полного контакта.

Используя полученные выше зависимости для ΔV , в уравнении (1) можно найти неизвестное значение δ_D (или δ_d) и искомую величину ξ_3 :

$$\xi_3 = \delta_D \operatorname{ctg} \alpha$$
или $\xi_3 = \delta_d \operatorname{ctg} \alpha$.

Как следует из формулы (1), упруго деформированный объем прямо пропорционален усилию закрепления оправки.

На рис. З приведены результаты расчета осевой погрешности закрепления оправки ξ_3 от угла β и размера A. Как следует из приведенного графика, отклонение угла β от номинального значения ($\beta = 1449$) в сторону уменьшения приводит к резкому росту ξ_3 . При $A \ge D$ (D = 57,15 мм) осевая погрешность закрепления оправки ξ_3 практически не зависит от изменения параметра A. При A < D эта зависимость становится прямо пропорциональной. На графике также четко прослеживается зона значительного увеличения ξ_3 (при минимальных значениях A и $\beta < \alpha$), связанная с формированием упруго деформированной области при неполном контакте.

0,1439 0,1443 0,1447 0,1451 0,1455 β , рад Рис. 3. Зависимость осевой погрешности затяжки оправки ξ_3 от угла β и размера A для конуса 40

Таким образом, полученные аналитические зависимости и результаты численного моделирования позволяют раскрыть механизм формирования погрешностей, возникающих при смене инструмента, и обоснованно сформулировать конструкторско-технологические требования к их изготовлению.

Как следует из полученных выражений, упругая деформация поверхностных слоев соединения оправки и гнезда шпинделя зависит от коэффициента контактной податливости. Величину данного коэффициента можно менять за счет микрогеометрии.

Так, например, для повышения точности обработки за счет повышения контактной жесткости соединения шпиндель-инструмент, коническую поверхность оправки можно изготовить с микрорельефом, имеющим переменный уровень шероховатости. При этом высший уровень шероховатости расположен на конической поверхности, прилегающей к наименьшему диаметру оправки, а наименьший уровень шероховатости – на конической части, прилегающей к наибольшему диаметру оправки (рис. 4) [4].

Рис. 4. Оправка с переменным уровнем шероховатости:

1 – коническая оправка; 2 – резьбовой узел для крепления тяги; 3 - цилиндрическая часть для крепления инструмента;
 4 – шпиндель; А – поверхность с высшим уровнем шероховатости; В – поверхность с наименьшим уровнем шероховатости

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Денисенко, А.Ф., Петрунин, В.И., Казакова, О.Ю. Исследование точности и жесткости механизмов смены инструмента металлорежущих станков. Самара: Самарский государственный технический университет, 2012. – 188 с.

2. Денисенко, А.Ф., Казакова, О.Ю. Формирование погрешности инструментальной оправки при автоматической смене инструмента // Вестник Самарского государственного технического университета. – 2013. – №2(38). – С. 111–116.

3. Казакова, О.Ю., Петрунин, В.И., Казаков, А.А. Повышение точности при обработке заготовок на станках с ЧПУ // Наукоёмкие технологии в машиностроении. – 2016. – №2(56). – С. 44–48.

4. Пат. 2426627 РФ А.Ф. Денисенко, С.Р. Абульханов, О.Ю. Казакова: заявитель и патентообладатель Самарский государственный технический университет. –

№ 2009103387/02; заявл. 02.02.2009;опубл. 20.08.2011. – Бюл. № 23. – 7 с.

REFERENCES

1. Denisenko, A.F., Petrunin, V.I., Kazakova, O.Yu. Study of accuracy and rigidity of tool change mechanisms in machine-tools. Samara: *Samara State Technical University*, 2012. – pp. 188.

2. Denisenko, A.F., Kazakova, O.Yu. Error formation in tool-holder at automatic tool change // *Bulletin of Samara State Technical University.* – 2013. – №2(38). – pp. 111–116.

3. Kazakova, O.Yu., Petrunin, V.I., Kazakov, A.A. Accuracy increase at billet machining on NC machine-tools // Science intensive Technologies in Mechanical Engineering. $-2016. - N^{\circ}2(56). - pp. 44-48.$

4. Pat. 2426627 RF A.F. Denisenko, S.R. Abdulkhanov, O.Yu. Kazakova: applicant and patenter Samara State Technical University. – \mathbb{N} 2009103387/02; applied. 02.02.2009; published. 20.08.2011. – *Bull.* \mathbb{N} 23. – pp. 7

Рецензент д.т.н. Б.М. Базров