Е.В. Сливинский, С.Ю. Радин, Т.Е. Митина

ИССЛЕДОВАНИЕ КОЛЕБАНИЙ СТЕРЖНЯ АДАПТИВНОЙ ТОРСИОННОЙ РЕССОРЫ ДЛЯ РЕССОРНОГО ПОДВЕШИВАНИЯ ТРЁХОСНЫХ ТЕЛЕЖЕК ТЕПЛОВОЗОВ

Представлены материалы, касающиеся разработки перспективной конструкции адаптивного торсионного подвешивания для тепловозов. Разработка рекомендуется научно-исследовательским и промышленным структурам в области тяжёлого машиностроения как в нашей стране, так и за рубежом с целью ее дальнейшего изучения и возможного внедрения в практику.

Ключевые слова: адаптивная торсионная рессора, колебания, рессорное подвешивание.

E.V. Slivensky, S.Yu. Radin, T.E. Mitina

ROD OSCILLATION INVESTIGATION OF ADAPTIVE TORSION SPRING FOR SPRING SUSPENSION OF SIX-WHEEL LOCOMOTIVE BOGIES

In modern locomotive design to reduce a dynamic effect upon a track there are widely used jaw and lawless six-wheel bogies supplied with a spring suspension using laminated springs, cylindrical spiral springs of compression and pneumatic springs. A considerable drawback of all known designs of spring suspension for rolling-stock is that all of them apart from a pneumatic one have no possibility for self-regulation in an automatic mode of their rigid characteristics de-

Введение

В конструкциях современных локомотивов для уменьшения динамического воздействия на путь широко применяются челюстные и бесчелюстные трёхосные тележки, снабжённые рессорным подвешиванием, в котором используются как листовые рессоры, так и винтовые пружины сжатия [1]. Так, рессорное подвешивание тепловоза ТЭП60 представляет собой упругую связь, расположенную между его рамой и колёсными парами, и выполнено в виде двух ступеней. Первая ступень представляет собой упругую связь между рамой тележки и буксами пружин и листовых рессор, а вторая ступень включает в себя маятниковые опоры с пружинами, воспринимающими нагрузку от главной рамы тепловоза через шаровые опоры. Несмотря на свою эффективность использования, такое рессорное подвешивание является довольно сложным, металлоемким и при эксплуатации требует значительных pending on external dynamic impacts of track unevenness upon the latter. There is developed in Bunin State University of Yelets a promising invention-leveled structure of an adaptive torsion spring suspension excluding such a drawback and a number of computations was carried out for the substantiation its rational design values.

Key words: adaptive torsion spring, oscillations, spring hanger.

затрат на ремонт и профилактику. Широкое же распространение листовых рессор в конструкциях рессорного подвешивания грузовых локомотивов обусловлено тем, что они эффективно гасят возникающие от неровности пути и колес колебания. Это происходит за счет создания значительных по величине сил трения между смежными листами рессор. Однако по мере высыхания смазки между листами и появления коррозии значительно снижается чувствительность листовых рессор к восприятию динамических нагрузок, а это значит, что они начинают работать только при высоких скоростях движения локомотивов. Известна также бесчелюстная тележка тепловоза 2ТЭ10М, в которой в качестве рессорного подвешивания использованы комплекты цилиндрических винтовых пружин сжатия. В современных схемах рессорного подвешивания локомотивов имеется возможность отказаться от листовых рессор,

пружин и устройств для гашения колебаний - гидравлических, фрикционных и резиновых демпферов.

Одним из перспективных технических решений, используемых в рессорном локомотивов, являются подвешивании торсионные рессоры. Они представляют собой стержень круглого или квадратного сечения, один конец которого закреплен во втулке, установленной на раме тележки, а другой жестко связан с рычагом, который соединен с обрессоренной частью экипажа, например с кузовом. Второй опорой стержня служит подшипник, также закрепленный на раме тележки. В отличие от пружин и листовых рессор торсион испытывает деформацию чистого кручения, поэтому материал, из которого он изготовлен, используется намного лучше, чем в указанных упругих элементах рессорного подвешивания.

При проектировании рессорного подвешивания локомотивов выполняют расчет как листовых рессор, так и витых рессор (пружин) на прочность и жесткость с помощью широко известных методов сопротивления материалов и расчёта деталей машин. Расчет же торсионных рессор проводят с проверкой условия прочности по формуле [2]

$$\tau = \frac{16M_{\kappa p}}{\pi d^3} = 16 \frac{Na}{\pi d^3} \le [\tau]$$
,

где *N* – усилие, приложенное к рычагу торсиона; *а* – длина рычага торсиона.

При этом угол закручивания вычисляют по зависимости [2]

$$\gamma = \frac{Ndl}{I_{\rho}G},$$

где I_{ρ} – полярный момент инерции сечения стержня торсиона $(0,1d^4 \text{ см}^4)$; G – модуль сдвига (8·10⁴ МПа).

Прогиб точки приложения силы *N* и жесткость торсиона определяют по зависимостям [2]

$$\Delta = \gamma d = \frac{Nd^2l}{I_{\sigma}G} \qquad \text{M} \qquad \mathcal{K} = \frac{N}{\Delta} = \frac{I_{\rho}G}{ld^2}.$$

Из представленных формул видно, что важным расчетным параметром является величина рабочей нагрузки, приложенной к рессорным комплектам. Такие нагрузки возникают в динамике, и рессоры поглощают часть энергии толчков, вызываемых неровностями пути, постепенно превращая эту энергию в энергию колебаний надрессорного строения. Эти колебания сопровождаются непрерывным рассеванием энергии за счет трения между листами рессор, трения в гасителях колебаний и других внутренних сопротивлений, что приводит к быстрому затуханию колебаний и устраняет опасность перехода через резонансные области. Основными видами колебаний являются подпрыгивание, галопирование и боковая качка рельсовых экипажей.

Существенным недостатком известных конструкций рессорного подвешивания локомотивов является то, что все они, кроме пневматического, не имеют возможности саморегулирования в автоматическом режиме своих жесткостных характеристик в зависимости от внешних динамических воздействий неровности пути на последние.

1. Описание конструкции и работы перспективного рессорного подвешивания

В течение ряда лет в СКБ ЕГУ им. И.А. Бунина по заказу Управления ЮВЖД (филиала ОАО «РЖД») проводилась НИР на тему «Разработка практических рекомендаций по нововведению надежности, технико-экономических, технологических и эксплуатационных показателей при эксплуатации и ремонте подвижного состава

и другого оборудования, используемого на Юго-Восточной железной дороге». Одному из ее разделов посвящены исследования, связанные с упрощением конструкции и повышением эффективности использования рессорного подвешивания локомотивов и вагонов.

Рис.1. Адаптивная торсионная рессора (RU2317214)

На рис.1 показана адаптивная торсионная рессора (RU2317214), состоящая из стержня 1, на котором нарезана длинноходовая резьба 2, контактирующая с ответной, выполненной на внутренней поверхности пустотелого бруса 3. Конец пустотелого бруса снабжен фланцем 4, жестко присоединенным к подвижной опоре 5, которая размещена в пазу 6 тележки локомотива 7. Стержень 1 также снабжен шлицами 8, взаимосвязанными с ответными, выполненными в подвижной опоре 5. Другой конец стержня 1 размещен в неподвижной опоре 9 и снабжен рычагом 10, шарнирно закрепленным на кузове локомотива 11.

Работа торсиона происходит следующим образом. При колебаниях кузова промышленного локомотива 11 динамические нагрузки Р_д воспринимаются рычагом 10, который получает, например, угловой поворот по стрелке С, что способствует повороту в эту же сторону стержня 1 торсиона. Так как стержень 1 торсиона снабжен длиноходовой резьбой 2, взаимосвязанной с ответной, выполненной на пустотелом брусе 3, то последний переместится по стрелке F, увлекая за собой в этом же направлении подвижную опору 5, которая, проскальзывая по шлицам 8 стержня 1 торсиона, уменьшит его рабочую длину L до новой рабочей длины L_1 . Уменьшение рабочей длины L стержня 1 торсиона будет способствовать увеличению его жесткости, что подтверждается известной зависимостью $K_{\varphi} = \frac{GI_{\rho}}{Id^2}$. Увеличение жесткости обеспечит эффективное демпфирование перемещения кузова локомотива 11 в этом направлении, что позволит снизить динамические нагрузки, передаваемые на узлы экипажной части локомотива, и повысит его плавность хода. После исчезновения усилия P_{∂} стержень 1 торсиона под действием сил упругого сопротивления возвращается в исходное положение (совместно с кузовом локомотива 11) и его рабочая длина L достигает первоначального значения. Далее описанные процессы могут повторяться неоднократно.

В ряде случаев параметры механической системы, такой как адаптивный торсион, выполненный по патенту RU2317214 (например крутильная жесткость). не остаются неизменными, а являются некоторой заданной функцией времени, чаще периодической [3; 4]. Если нарушить состояние равновесия такой системы, то будут происходить своеобразные колебания. С одной стороны, их нельзя назвать свободными, так как система испытывает определенное внешнее воздействие (в виде изменения крутильной жесткости стержня торсиона), а с другой - они не являются вынужденными, так как внешнее воздействие не проявляется в виде заданной возмущающей силы. Такие колебания называются параметрическими. В зависимости от свойств системы и характера изменения ее параметров они могут иметь ограниченные или возрастающие амплитуды, причем во втором случае возможно наступление параметрического резонанса.

2. Расчёт основных параметров предложенной конструкции рессоры

Рассмотрим расчётную схему торсиона (рис. 2), представляющую собой упругий стержень 1, расположенный в направляющей неподвижной втулке 2, к которому приложен крутящий момент Т. углового поворота упругого Свобода стержня 1 ограничена подвижной в продольной плоскости стержня 1 шлицевой втулкой 3, удаленной от нижнего конца стержня на расстояние *l*.

Рис. 2. Расчётная схема торсиона

Составим уравнение свободных колебаний упругого стержня 1, считая, что они происходят в плоскости, перпендикулярной плоскости чертежа. Если в текущий момент времени t угловой поворот упругого стержня 1 составляет ϕ , то восстанавливающая сила упругости стержня равна $K_{\varphi}\varphi$, а уравнение его движения имеет вид

$$-K_{\varphi}\varphi = J_{m}\ddot{\varphi} ,$$

$$K_{\varphi} = \frac{GJ_{\rho}}{J_{m}(l+z)d^{2}} = \frac{GJ_{\rho}}{J_{m}(l+A\cos\omega t)d^{2}}$$

Тогда дифференциальное уравнение (1) становится уравнением с переменными коэффициентами

$$\ddot{\varphi} + \frac{GJ_{\rho}}{J_m \left(l + A\cos\omega t\right) d^2} \varphi = 0, \qquad (2)$$

что характерно для системы с параметрическим возбуждением колебаний.

В практике существует значительное число других механических систем, подверженных параметрическому возбуждению. Ряд примеров убеждает, что в большинстве практически важных случаев где *К*_{*\varphi*} – коэффициент крутильной жесткости системы; J_m – момент инерции стержня.

Шлицевая втулка 3 при ее достаточной длине обеспечивает практически полное защемление упругого стержня 1, и тогда $K_{\varphi} = \frac{GJ_{\rho}}{Id^2}$. Предположим, что упругий стержень 1 имеет постоянное поперечное сечение с осевым моментом инерции Ј. Таким образом, дифференциальное уравугловых поворотов упругого нение стержня 1 запишется в виде [5; 6]

$$\ddot{\varphi} + \frac{GJ_{\rho}}{J_m ld^2} \varphi = 0.$$
 (1)

Если расстояние *l* постоянно, то уравнение (1) описывает свободные колебания стержня около среднего положения с собственной частотой

$$\omega_{c} = \sqrt{\frac{GJ_{\rho}}{J_{m}ld^{2}}}.$$

Теперь предположим, что шлицевая втулка 3 скользит вдоль упругого стержня 1 по заданному закону

$$z = A \cos \omega t$$
,

т.е. упругий стержень 1 совершает около среднего положения *l* гармонические колебания с амплитудой А и круговой частотой ω . В этом случае коэффициент жесткости оказывается функцией времени и его можно записать в виде

$$=\frac{GJ_{\rho}}{J_{m}\left(l+z\right)d^{2}}=\frac{GJ_{\rho}}{J_{m}\left(l+A\cos\omega t\right)d^{2}}.$$

дифференциальное уравнение параметрических колебаний можно привести к стандартной форме [4]

$$\frac{d^2\varphi}{d\tau^2} + (a - 2q\cos 2\tau)\varphi = 0,$$
(3)

где a и q - некоторые постоянные.

Вернёмся к механической системе, показанной на рис. 2. Предположим, что амплитуда колебаний втулки А весьма ма-В этом случае дифференциальное ла. уравнение (2) примет вид

$$\ddot{\varphi} + \frac{GJ_{\rho}}{J_m ld^2} \left(1 - \frac{A}{ld^2} \cos \omega t \right) \varphi = 0.$$
(4)

Перейдем к безразмерному времени $\tau : 2\tau = \omega t$.

Тогда

$$\frac{d^2\varphi}{dt^2} = \frac{\omega^2}{4} \frac{d^2\varphi}{d\tau^2}$$

В итоге дифференциальное уравнение (4) приобретает стандартную форму (3), которую можно получить в окончательном виде (5) в следующей последовательности:

$$\begin{split} \frac{\omega^2}{4} \frac{d^2 \varphi}{d\tau^2} &= -\frac{GJ_{\rho}}{J_m l d^2} \left(1 - \frac{A}{l d^2} \cos 2\tau\right) \varphi = 0;\\ \frac{d^2 \varphi}{d\tau^2} &= -\frac{GJ_{\rho}}{J_m l d^2} \frac{4}{\omega^2} \left(1 - \frac{A}{l d^2} \cos 2\tau\right) \varphi = 0;\\ \frac{d^2 \varphi}{d\tau^2} &+ \left(\frac{4GJ_{\rho}}{J_m l d^2 \omega^2} - \frac{4GJ_{\rho}A}{J_m l^2 d^4 \omega^2} \cos 2\tau\right) \varphi = 0. \end{split}$$

При этом видно, что входящие в него коэффициенты *а* и *q* соответственно будут равны

$$a = \frac{4GJ_p}{J_m l d^2 \omega^2} \qquad \text{M} \qquad q = \frac{2GJ_p A}{J_m l^2 d^4 \omega^2}$$

Основное уравнение параметрических колебаний (3), называемое уравнением Матье, и его решение описывают колебания рассматриваемого нами упругого стержня 1 (рис. 2), характер которых главным образом зависит от конкретных значений параметров *a* и *q*.

Значения параметров *а* и *q* в одном случае соответствуют колебаниям, ограниченным по амплитуде, а в другом - колебаниям с возрастающими амплитудами, способствующими возникновению резонанса упомянутого упругого стержня 1. Поэтому основную практическую важность предлагаемой конструкции торсиона представляет именно тенденция колебательного процесса, заключающаяся в следующем: если амплитуды остаются ограниченными, то система *устойчива*, в противном же случае имеет место параметрический резонанс, т.е. система *неустойчива*.

Для практических целей наибольшее значение имеют границы между областями устойчивых и неустойчивых решений. Этот вопрос хорошо исследован, причем окончательные результаты представляются в виде диаграммы, построенной в плоскости параметров *а* и *q*, которая называется *диаграммой Айнса-Стретта* [3; 4].

Каждой системе, характеризуемой параметрами *a* и *q*, соответствует точка с координатами (*a*, *q*) на диаграмме Айнса-Стретта (изображающая точка). Если изображающая точка находится в пределах белых полей диаграммы, то система устойчива; неустойчивым системам соответствуют изображающие точки, расположенные на заштрихованных полях.

Для проведения численного расчёта указанных характеристик применительно к тепловозу ТЭП60, у которого в рессорном подвешивании может быть реализовано техническое решение, описанное в патенте RU2317214, использован ряд известных параметров, входящих в соответствующие формулы: статическая нагрузка, приложенная к рычагу торсиона, $N_{CT} = 53$ кH; динамическая нагрузка, приложенная к рычагу торсиона, N_{∂} =13,25 кH; суммарная нагрузка на торсион $N_{\Sigma} = N_{CT} + N_{\partial}$ = 66,25 кН; момент, приложенный к стержню торсиона, $M_{\kappa p} = N_{\Sigma} l_1 = 19,8$ кH·м; длина приводного рычага торсиона $l_1 =$ 300 мм; длина рабочей части стержня торсиона l = 600 мм; изменение рабочей длины стержня торсиона $\Delta l = 0 - 40$ мм; материал стержня торсиона - сталь 65C2BA (ГОСТ 14959-79); модуль упругости материала $G = 8 \cdot 10^4$ МПа; диаметр стержня торсиона - 60,0 мм; полярный момент инерции стержня торсиона $J_{\rho} = 129,6 \text{ см}^4$; массовый момент инерции стержня $J_m =$ 108 кг·мм·с²; круговая частота колебаний стержня $\omega = 10 - 35$ рад/с; угол закручивания стержня торсиона $\varphi = 8 - 17^0$ (при N_{CT} - 8⁰, а при N_{∂} -17⁰); амплитуда продольных колебаний стержня торсиона A =10 – 60 мм.

Вычислительный эксперимент выполнен в системе Matlab 6.5. Следует отметить, что уравнение Матье не имеет точного аналитического решения, а приближенное его решение можно получить, например, методом Хилла [5] или одним из численных методов.

С учётом изложенного решим уравнение Матье (3) с использованием солвера ode45, который основан на методе РунгеКутта четвертого и пятого порядков точности. Входными аргументами солвера являются: имя файл-функции в апострофах, вектор с начальным и конечным значениями времени наблюдения за колебаниями и вектор начальных условий. Выходных аргументов два: вектор значений времени и матрица значений неизвестных функций. Значения функций расположены по столбцам матрицы: в первом столбце – значение самой функции, во втором – значение ее первой производной.

Схема нахождения численного решения состоит из следующих этапов:

1. Приведение дифференциального уравнения к системе дифференциальных уравнений первого порядка. Для уравнения Матье (3) была получена система

Рис. 3. Файл-функция equation_Fi

Результаты расчета представлены на рис. 4, из которого видно, что все значения параметра q слабо отличаются друг от друга. Следовательно, точки с координатами (a, q) будут приближены к оси абсцисс на диаграмме Айнса-Стретта. Поэтому для различных значений параметра a было взято одно из значений параметра q. Точки с полученными координатами были отмечены на диаграмме (рис. 5).

Из рис. 5 видно, что все точки лежат в белых областях диаграммы, следовательно, система устойчива для всех значений. Однако на диаграмме не указана точ-

$$\begin{cases} \varphi_1' = \varphi_2; \\ \varphi_2' = -\varphi_1 \left(a - 2q \cos 2\tau \right) \end{cases}$$

при начальных условиях $\varphi(0) = 0.08; \varphi'(0) = 0.$

2. Написание специальной файлфункции для полученной системы уравнений. Файл-функция для уравнения (3) equation_Fi представлена на рис. 3.

3. Вызов солвера ode45.

4. Визуализация полученного результата.

С помощью этой же файл-функции были получены значения параметров a и q уравнения Матье. А так как система исследуется при различных значениях амплитуды A и частоты ω , то необходимо провести анализ возможных значений параметров a и q.

Command Window						25
>> equation_Fi						~
a =						
17.7778						
7.9012						
4.4444						
2.8444						
1.9753						
1.4512						
q =			0.0004	0.0003	0.0000	
0.0025	0.0011	0.0006	0.0004	0.0003	0.0002	
0.0049	0.0022	0.0012	0.0000	0.0003	0.0004	
0.0074	0.0033	0.0019	0.0012	0.0000	0.0000	
0.0099	0.0044	0.0025	0.0010	0.0014	0.0010	
0.0123	0.0055	0.0031	0.0020	0.0016	0.0012	
0.0148	0.0000	0.0037	0.0024	010010	010010	
~1						
<						>

Рис. 4. Результаты расчёта

ка со значением параметра a = 17,7778. Известно, что около значений $a = \frac{k^2}{4}$ (при k = 1, 2, 3...) наступает параметрический резонанс, т.е. положение равновесия системы становится неустойчивым. Таким образом, система перейдет в неустойчивое состояние вблизи точек с ординатой q = 0 и абсциссами

 $a = \frac{1}{4}$; 1; $\frac{9}{4}$; 4; $\frac{25}{4}$; 9; $\frac{49}{4} \cong 12,25$; 16; $\frac{81}{4} \cong 20,25...$ Отсюда следует, что при коэффициенте a = 17,7778 система будет также устойчива.

Диаграмма Айнса-Стретта полностью освобождает от выполнения какихлибо операций по решению уравнения Матье [5]. Достаточно составить это уравнение, т.е. найти значения параметров системы *а* и *q*, после чего диаграмма даст ответ на вопрос об устойчивости или неустойчивости системы. Видно, что рассмотренная конструкция устойчива.

В качестве примера выполним численное решение уравнения Матье, что позволит дать картину возможного проявления резонанса в рассматриваемой колебательной системе. Вызов солвера и построение графика осуществляются в функции solv_Fi.m (рис. 6). По результатам решения уравнения Матье были построены графики, позволяющие установить резонансную область работы торсиона, а следовательно, дать оценку его безаварийной работоспособности.

Рис. 6. Функция solv_Fi.m

На рис. 7 приведён один из графиков, построенный для характерных условий работы торсиона (при A = 60 мм и частоты $\omega = 35$ рад/с), показывающий изме-

нение угловых колебаний стержня торсиона в зависимости от времени его нагружения ($\varphi = f(\tau)$). Анализ значительного числа полученных графиков, и в частности показанного в качестве примера на рис. 7, позволил установить, что вход стержня торсиона в резонансный режим работы не происходит, что свидетельствует о его надёжности в эксплуатационных условиях. При этом численное значение угла поворота стержня торсиона для рассматриваемого примера остается постоянным, равным $\varphi = 0,08$ рад, и не характеризуется областью перехода в резонанс.

Рис. 7. Пример построения графика для характерных условий работы торсиона

Заключение

Результаты исследования рекомендуются к использованию отраслевым НИИ тяжёлой промышленности, выпускающей локомотивы, а также конструкторским подразделениям предприятий, серийно из-

СПИСОК ЛИТЕРАТУРЫ

- Железнодорожный транспорт: энциклопедия/ гл. ред. Н. С. Конарев. – М.: Больш. Рос. энцикл., 1994. – 559 с.
- Орлов, П.И. Основы конструирования: в 2 кн. / П.И. Орлов. - М.: Машиностроение, 1988.-Кн. 2.-544 с.
- Mathieu, Emile. Cours de physique mathematique/ Emile Mathieu. - Paris, Gauthier-Villars, 1873.
- Стретт, М. Д. О. Функции Ламе, Матье и родственные им в физике и технике: [пер. с нем.] / М.Д. О. Стретт. - Харьков; Киев, 1935.
- Railway Transport: Encyclopedia/ Editor-in-Chief N.S. Konarev. – M.: Great Russian Encyclopedia, 1994. – pp. 559.
- Orlov, P.I. Design Fundamentals: in 2 Vol. / P.I. Orlov. - M.: Mechanical Engineering, 1988.-Vol. 2.- pp. 544.
- Mathieu, Emile. Cours de physique mathematique/ Emile Mathieu. - Paris, Gauthier-Villars, 1873.

готовляющих, ремонтирующих и эксплуатирующих магистральные и промышленные тепловозы, как в нашей стране, так и за рубежом.

- 5. Мак-Лахлан, Н.В. Теория и приложения функций Матье/ Н.В. Мак-Лахлан. – М.: Изд-во иностр. лит., 1953. – 475 с.
- Камке, Э. Справочник по обыкновенным дифференциальным уравнениям: [пер. с нем.] / Э. Камке. – 5-е изд. - М., 1976.
- Якубович, В. А. Линейные дифференциальные уравнения с периодическими коэффициентами и их приложения/ В.А. Якубович, В.М. Старжинский. - М., 1972.
- Strett, M.D. On Lame, Mathieu Functions and Related Them in Physics and Techniques; [transl. from Germ.] / M.D. Strett. - Kharkov; Kiev, 1935.
- MacLahlan, N.V. Theory and Applications of Mathieu Functions/ N.V. MacLahlan. – M.: Publishing House of Foreign Literature, 1953. – pp. 475.
- Kamke, E. Reference Book on Common Differential Equations; [transl. from Germ.] / E. Kamke. - 5 Edition. - M., 1976.

7. Yakubovich, V.A. Linear Differential Equations with Periodic Coefficients and Their Applications/

V.A. Yakubovich, V.M. Starzhinsky. - M., 1972.

№ 2(50) 2016

Статья поступила в редколлегию 18.01.2016. Рецензент: д.т.н., профессор Брянского государственного технического университета Петров Г.И.

Сведения об авторах:

Сливинский Евгений Васильевич, д.т.н., профессор кафедры «Механика и технологические процессы» Елецкого государственного университета им. И.А. Бунина, тел.: 8-920-246-86-81.

Радин Сергей Юрьевич, к.т.н., доцент кафедры «Механика и технологические процессы» Елецкого

Slivinsky Yevgeny Vasilievich, D.Eng., Prof. of the Dep. "Mechanics and Technological rocesses" Bunin State University of Yelets Phone: 8-920-246-86-81. Radin Sergey Yurievich, Can.Eng., Assistant Prof. of the Dep. "Mechanics and Technological Processes" государственного университета им. И.А. Бунина, тел.: 8-910-251-36-55.

Митина Татьяна Евгеньевна, соискатель Елецкого государственного университета им. И.А. Бунина, тел.: +7 (47467) 4-25-75.

Bunin State University of Yelets, Phone: 8-910-251-36-55.

Mitina Tatiana Yevgenievna, Competitor Bunin State University of Yelets, Phone: +7 (47467) 4-25-75.