УДК 621.824.32.004.67:621.4

В.Я. Коршунов, Д.А. Новиков

ОЦЕНКА ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ СПОСОБОВ ВОССТАНОВЛЕНИЯ ШЕЕК КОЛЕНЧАТЫХ ВАЛОВ ПРИ РЕМОНТЕ ДВИГАТЕЛЕЙ

Представлены результаты оценки энергетической эффективности различных технологических способов восстановления шеек коленчатых валов при ремонте двигателей.

Ключевые слова: энергия, эффективность, удельная работа, КПД, шлифование, производительность.

При восстановлении изношенных в процессе эксплуатации шеек коленчатых валов двигателей используются различные технологические способы: ручная электродуговая наплавка, вибродуговая наплавка, наплавка в среде CO_2 и под слоем флюса, а также шлифование шеек коленчатых валов в ремонтный размер [1; 2].

Следует отметить, что применяемые в настоящее время технологические процессы восстановления изношенных шеек коленчатых валов являются довольно энергоёмкими. Поэтому анализ энергетической эффективности данных процессов и поиск путей её повышения является важной государственной задачей [3; 4].

Оценить энергетическую эффективность технологических процессов восстановления можно двумя критериями: удельной работой ω_n и коэффициентом полезного действия η_n .

Удельная работа ω_п рассчитывается по формуле

$$\omega_{\pi} = \frac{\dot{W}_{\pi}}{\dot{V}_{\pi}} \, \text{Дж/мм}^3,$$

где $\dot{\mathbf{W}}_{\mathbf{n}}$ – мощность процесса восстановления, $\dot{\mathbf{B}}$ т; $\dot{\mathbf{V}}_{\mathbf{n}}$ – производительность, мм³/с.

Мощность процесса восстановления определяется как произведение силы тока I(A) и напряжения U(B), т. е.

$$\dot{W}_{n} = IU Bm$$

Производительность процесса восстановления изношенных поверхностей определяется соотношением

$$\dot{V}_{\rm m} = \pi R_{\rm mp}^2 \dot{v}_{\rm mp} \, {\rm MM}^3/c_z$$

где \mathbb{R}_{mv} – радиус проволоки, мм; $\dot{\mathbf{v}}_{mv}$ – скорость подачи проволоки, мм/с.

В последние годы для оценки энергетической эффективности процессов восстановления используется термодинамический критерий — коэффициент полезного действия $\eta_{\rm n}$ [5], который представляет собой отношение плотности внутренней энергии $\Delta U_{\rm i}$, накопленной в рассматриваемом (сошлифованном) объёме материала, к удельной работе $\omega_{\rm n}$:

$$\begin{split} \eta_{_{\mathbf{T}}} &= \frac{\Delta U_{i}}{\omega_{_{\mathbf{T}}}} \, 100\%, \\ \eta_{_{\mathbf{T}}} &= \frac{\Delta U_{i} \cdot \dot{V}_{_{\mathbf{T}}}}{\dot{W}_{_{\mathbf{T}}}} = \frac{\dot{U}_{_{\mathbf{T}}}}{\dot{W}_{_{\mathbf{T}}}} \, 100\%. \end{split}$$

Величина накопленной внутренней энергии ΔU_i определяется по термодинамическому критерию разрушения твердых тел U_* , равному энтальпии плавления материалов Hs, т. е. $U_* = Hs$ [6]:

$$\Delta U_* = U_* - U_{eo} - U_{ro} \ \mbox{Дж/мм}^3$$
;

где \mathbf{U}_{eo} – величина упругой энергии дефектов, накопленной материалом в процессе изготовления проволоки-электрода или детали при шлифовании, Дж/мм³; \mathbf{U}_{to} – накопленный уровень тепловой составляющей внутренней энергии, Дж/мм³.

Анализ критериев энергетической эффективности процессов восстановления деталей показал, что КПД является более универсальным критерием по сравнению с удельной работой, так как КПД не только учитывает общую энергию, подводимую к паре «деталь-инструмент», но и показывает, насколько эффективно она расходуется.

Режимы для процессов восстановления деталей выбирались из литературных источников [7], после чего заносились вместе с рассчитанными экспериментальными критериями эффективности в таблицу.

Таблица Режимы процессов восстановления деталей и рассчитанные энергетические критерии эффективности

критерии эффективности									
Процесс восстановления	I, A	U, B	∪ _{пр} , мм/с	V _п , мм ³ /с	₩ _π , Bt	с о _п , Дж/мм³	∆U _в , Дж/мм³	Ü ≖, Дж/с	$\eta_\pi, \%$
Ручная электродуговая наплавка	80	20	16,6	32,9	1600	48,6	5,0	164,5	9,2
Вибродуговая наплавка	140	15	22,7	45,6	2110	46,2	5,0	228	10,8
Наплавка в среде CO ₂	170	20	41,6	83,5	3400	40,7	5,0	417,5	12,2
Наплавка под слоем флюса	160	28	33,5	67,4	4400	65,3	5,0	337,4	7,8
Черновое шлифование	_	_	_	28,0	2362	84,3	2,7	78,4	3,2
Чистовое шлифование	_	_	_	15,0	1350	90	2,7	40,5	3,0

На основе анализа данных, представленных в таблице, можно сделать следующие выводы.

Из рассмотренных способов электродуговой наплавки изношенных поверхностей наибольшее значение КПД η_π =12,2% и соответственно наименьшую величину удельной работы ω_π =40,7 Дж/мм³ показал процесс наплавки деталей в среде углекислого газа CO_2 , а наименьшие η_π =7,8% и ω_π =65 Дж/мм³ – процесс наплавки под слоем флюса.

КПД процесса шлифования шеек коленчатых валов в ремонтный размер на основе использования производственных технологических условий составил при черновой обработке $\eta_{\rm m}$ =3,2%, при чистовой – $\eta_{\rm m}$ =3,0%; удельная работа – соответственно $\omega_{\rm m}$ =84,3 Дж/мм³ и $\omega_{\rm m}$ =90 Дж/мм³. Это примерно в 3 раза меньше КПД и в 2 раза больше удельной работы электродуговых способов восстановления деталей.

Представленные в данной статье результаты показали, что разработка энергосберегающих технологий при шлифовании шеек коленчатых валов в ремонтный размер является в настоящее время весьма актуальной задачей для ремонтного производства.

СПИСОК ЛИТЕРАТУРЫ

1. Иминов, М.У. Разработка технологического процесса и оборудования для восстановления коленчатых валов двигателей КамАЗ-740/ М.У. Иминов // Совершенствование технологии обслуживания и ремонта автомобилей. — Алма-Ата, 1990. - С.44-49.

- 2. Русаков, В.А. Бездеформационная наплавка чугунных коленчатых валов/ В.А.Русаков, Б.Ф. Тугушев, В.А. Наливкин // Современные методы наплавки, упрочняющие защитные покрытия и используемые материалы: тез. докл. 4-й Укр. респ. науч.- техн. конф. (20-22 нояб. 1990 г.). Харьков, 1990. С. 79-81.
- 3. Постановление Правительства РФ №588 от 15 июня 1998 г. «О дополнительных мерах по стимулированию энергосбережения в России».
- 4. Постановление Правительства РФ №1225 от 31.12.09 «О программах в области энергосбережения и повышения энергетической эффективности».
- 5. Коршунов, В.Я. Оптимизация технологических условий абразивной обработки по КПД / В.Я Коршунов // Станки и инструмент. -1990. -№5. -C. 17-20.
- 6. Коршунов, В.Я. Разработка термодинамического метода повышения эффективности и качества шлифования деталей машин/В.Я. Коршунов// Наука о резании материалов в современных условиях: Междунар. юбил. науч.-техн. конф.— Тула: ТулГУ, 2005.— С.23-27.
- 7. Пучин, Е.А. Технология ремонта машин/ Е.А. Пучин, В.С. Новиков, Н.А. Очковский [и др.]. М.: КолосС, 2007.– 488 с.

Материал поступил в редколлегию 9.01.15.